Difference between revisions of "Material Models"
(216 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
Numerous material models are available in NairnMPM | Numerous material models are available in [[NairnMPM]]. For those working with source code, you can [[Creating MPM Materials|create your own material types]]. | ||
== Define a Material == | == Define a Material == | ||
You create materials using a [[Material Command Block|<tt>Material</tt> command block]]. Within that block all material properties are set using property commands. Refer to each material type to learn about its possible properties. | |||
== Linear Elastic Small Strain Materials == | |||
The materials in this section are all small-strain, linear elastic materials. They account for rotations by using a hypoelastic correction (using an approximate polar decomposition of the incremental deformation and done to second order in 2D and first order in 3D). | |||
{| class="wikitable" | |||
|- | |||
! Name !! ID !! Description !! Pσ !! Pε !! AS !! 3D | |||
|- | |||
| [[Isotropic Material|Isotropic]] || align="center"| 1 || width='300'|Linear elastic, isotropic | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Transversely Isotropic Material|Transverse]] || align="center"| 2 || Linear elastic, transversely isotropic with unique axis in the z direction | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Orthotropic Material|Orthotropic]] || align="center"| 4 || Linear elastic, orthotopic material | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Bistable Isotropic Material|Bistable]] || align="center"| 10 || Elastic, isotropic material with two stable states having different properties | |||
| align="center"| X || align="center"| X || align="center"| X || | |||
|} | |||
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations. | |||
== Hyperelastic Materials == | |||
The materials in this section are designed to solve finite strain (or large deformation) problems. They are formulated using hyperelasticity methods. | |||
=== | {| class="wikitable" | ||
|- | |||
! Name !! ID !! Description !! Pσ !! Pε !! AS !! 3D | |||
|- | |||
| [[Mooney Material|Mooney]] || align="center"| 8 || width='300'|Elastic, isotropic and Ideal Rubber Elasticity | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Neo-Hookean Material|Neohookean]] || align="center"| 28 || width='300'|Elastic and isotropic material | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Ideal Gas Material|IdealGas]] || align="center"| 22 || Ideal gas as a hyperelastic material | |||
| align="center"| || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Tait Liquid Material|TaitLiquid]] || align="center"| 27 || Newtonian liquid with Tait law for pressure dependence as a hyperelastic material | |||
| align="center"| || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[JWLPlusPlus Material|JWLPlusPlus]] || align="center"| 22 || JWL++ Detonation Material | |||
| align="center"| || align="center"| X || align="center"| X || align="center"| X | |||
|} | |||
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), with a 3D membrane (3M), or 3D calculations. | |||
== Elastic-Plastic Small Strain Materials == | |||
The materials in this section are all small-strain, elastic-plastic materials. They account for rotations by using a hypoelastic correction analagous to Jaumann Derivative methods. They handle plasticity by combining one of these materials with any compatible [[Hardening Laws|hardening law]]. | |||
{| class="wikitable" | |||
|- | |||
! Name !! ID !! Description !! Pσ !! Pε !! AS !! 3D | |||
|- | |||
| [[Isotropic, Elastic-Plastic Material|IsoPlasticity]] || align="center"| 9 || width='300'|Small-strain, isotropic, elastic-plastic material | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Anisotropic, Elastic-Plastic Material|HillPlastic]] || align="center"| 15 || Anisotropic, elastic-plastic material. | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|} | |||
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations. | |||
== Hyperelastic-Plastic Materials == | |||
The materials in this section are formulated within the framework of hyper elasticity formulation. They can handle plasticity by combining them with any compatible [[Hardening Laws|hardening law]]. | |||
{| class="wikitable" | |||
|- | |||
! Name !! ID !! Description !! Pσ !! Pε !! AS !! 3D | |||
|- | |||
| [[Isotropic, Hyperelastic-Plastic Material|HEIsotropic]] || align="center"| 24 || width='300'|Isotropic, hyperelastic-plastic material | |||
|| || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Isotropic, Hyperelastic-Plastic Mie-Grüneisen Material|HEMGEOSMaterial]] || align="center"| 25 || Isotropic, hyperelastic-plastic material using a Mie-Grüneisen equation of state. | |||
|| || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Clamped Neo-Hookean Material|ClampedNeohookean]] || align="center"| 29 || width='300'|Isotropic, hyperelastic-plastic material with tensile and compression elongations clamped to critical values. | |||
|| || align="center"| X || align="center"| X || align="center"| X | |||
|} | |||
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations. | |||
== | == Softening Materials == | ||
== | The materials in this section will model material softening to emulate damage and fractures. | ||
{| class="wikitable" | |||
|- | |||
! Name !! ID !! Description !! Pσ !! Pε !! AS !! 3D | |||
|- | |||
| [[Isotropic Softening Material|IsoSoftening]] || align="center"| 50 || Small-strain isotropic material with damage and softening | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Isotropic Plastic Softening Material|IsoPlasticSoftening]] || align="center"| 53 || Small-strain isotropic material that combines plasticity with damage and softening | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Transversely Isotropic Softening Material|TransIsoSoftening]] || align="center"| 51 || Small-strain transversely isotropic material with damage and softening and with unrotated axial direction in the z (or θ is axisymmetric) direction | |||
| || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Orthotropic Softening Material|OrthoSoftening]] || align="center"| 54 || Small-strain orthotropic material with damage and softening | |||
| || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Orthotropic Plastic Softening Material|OrthoPlasticSoftening]] || align="center"| 56 || Small-strain orthotropic material with damage, plasticity, and softening | |||
| || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Isotropic Phase Field Softening Material|IsoPhaseFieldSoftening]] || align="center"| 57 || Isotropic phase field material for variational fracture mechanics | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Isotropic Damage Mechanics|IsoDamageMechanics]] || align="center"| 58 || Isotropic material that damage by isotropic or scalar damage mechanics | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|} | |||
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations. Softening materials model failure by particle undergoing decohesion. The particle remain in the simulations and will continue to open their implied cracks. Alternativelym failure particles can be removed with the [[DeleteDamaged Custom Task]]. | |||
== Viscoelastic Materials == | == Viscoelastic Materials == | ||
The materials in this section are viscoelastic materials. | |||
{| class="wikitable" | |||
|- | |||
! Name !! ID !! Description !! Pσ !! Pε !! AS !! 3D | |||
|- | |||
| [[Viscoelastic Material|Viscoelastic]] || align="center"| 7 || width='300'|Small-strain, linear viscoelastic material with sum of relaxation times | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Transversely Isotropic Viscoelastic Material|TIViscoelastic]] || align="center"| 5 || Small-strain transversely isotropic material for linear viscoelasticity with unrotated axial direction in the z (or θ is axisymmetric) direction | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|} | |||
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations. | |||
== Phase Transition Materials == | |||
The materials in this section control phase transitions between two other materials. | |||
{| class="wikitable" | |||
|- | |||
! Name !! ID !! Description !! Pσ !! Pε !! AS !! 3D | |||
|- | |||
| [[First Order Phase Transition Material|PhaseTransition]] || align="center"| 30 || width='300'|A first order phase transition between two materials | |||
| || align="center"| X || align="center"| X || align="center"| X | |||
|} | |||
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations. | |||
== Membrane Materials == | |||
The materials in this section will model membranes using [[MPM Region and Hole Commands#Membrane Particles|lines of particles in 2D or planes of particles in 3D]]. Membranes are in development and only available in [[OSParticulas]]. They have been useful in some simulations. They are based in deformation within the membrane and likely do not model bending stiffness well. Further development is needed. | |||
{| class="wikitable" | |||
|- | |||
! Name !! ID !! Description !! 2M !! 3M | |||
|- | |||
| [[Mooney Membrane Material|MooneyMembrane]] || align="center"| 40 || Membrane material based on a [[Mooney Material|Mooney-Rivlin material]] || align="center"| X || align="center"| X | |||
|- | |||
| [[Anisotropic, Hyperelastic Material|HEAnisotropic]] || align="center"| 21 || Anisotropic, hyperelastic material || align="center"| X || align="center"| X | |||
|} | |||
The table columns on the right indicate if each material can be used for a membrane in 2D calculations (2M) or in 3D calculations (3M). | |||
== Rigid Materials == | == Rigid Materials == | ||
Rigid materials can be used either to apply moving velocity, temperature, or concentration boundary conditions or to interact with non-rigid material by contact mechanics. | |||
{| class="wikitable" | |||
|- | |||
! Name !! ID !! Description !! Pσ !! Pε !! AS !! 3D | |||
|- | |||
| [[Rigid Material|RigidBC]] || align="center"| 11 || width='300'|A rigid material that sets moving boundary conditions on the grid | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Rigid Material|RigidContact]] || align="center"| 35 || width='300'|A rigid material that that interacts with other materials by contact | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|- | |||
| [[Rigid Block Material|RigidBlock]] || align="center"| 36 || width='300'|A rigid material that that interacts with other materials by contact and whose motion is driven by contact forces | |||
| align="center"| X || align="center"| X || align="center"| X || align="center"| X | |||
|} | |||
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations. | |||
== Material Class Hierarchy == | |||
Materials are C++ classes. The following class hierarchy shows the orginzation of those C++ classes in the [[NairnMPM]] source code. A material in green is an abstract class that is never assigned to particles. All others are material classes (by their name or their ID in parentheses). For those [[Creating MPM Materials|creating their own materials]], they must be inserted in this hierarchy using a unique name and ID: | |||
* <font color="green">MaterialBase</font> | |||
** <font color="green">Elastic</font> | |||
*** [[Isotropic Material|Isotropic]] (1) | |||
**** [[Isotropic, Elastic-Plastic Material|IsoPlasticity]] (9) | |||
**** [[Bistable Isotropic Material|Bistable]] (10) | |||
**** [[Isotropic Softening Material|IsoSoftening]] (50) | |||
***** [[Isotropic Plastic Softening Material|IsoPlasticSoftening]] (53) | |||
***** [[Isotropic Damage Mechanics|IsoDamageMechanics]] (58) | |||
**** [[Isotropic Phase Field Softening Material|IsoPhaseFieldSoftening]] (57) | |||
*** [[Transversely Isotropic Material|Transverse]] (2) | |||
**** [[Orthotropic Material|Orthotropic]] (4) | |||
***** <font color="green">AnisoPlasticity</font> | |||
****** [[Anisotropic, Elastic-Plastic Material|HillPlastic]] (15) | |||
**** [[Transversely Isotropic Softening Material|TransIsoSoftening]] (51) | |||
***** [[Orthotropic Softening Material|OrthoSoftening]] (54) | |||
****** [[Orthotropic Plastic Softening Material|OrthoPlasticSoftening]] (56) | |||
**** [[Transversely Isotropic Viscoelastic Material|TIViscoelastic]] (5) | |||
** <font color="green">HyperElastic</font> | |||
*** [[Mooney Material|Mooney]] (8) | |||
**** [[Mooney Membrane Material|MooneyMembrane]] (40) | |||
*** [[Isotropic, Hyperelastic-Plastic Material|HEIsotropic]] (24) | |||
**** [[Isotropic, Hyperelastic-Plastic Mie-Grüneisen Material|HEMGEOSMaterial]] (25) | |||
**** [[Isotropic Electro-Deposition Material|IsoED]] (70) | |||
*** [[Anisotropic, Hyperelastic Material|HEAnisotropic]] (21) | |||
*** [[Ideal Gas Material|IdealGas]] (22) | |||
*** [[Tait Liquid Material|TaitLiquid]] (27) | |||
*** [[Neo-Hookean Material|Neohookean]] (28) | |||
**** [[Clamped Neo-Hookean Material|ClampedNeohookean]] (29) | |||
**** [[Reaction Phase Material|ReactionPhase]] (31) | |||
*** [[JWLPlusPlus Material|JWLPlusPlus]] (32) | |||
** [[Viscoelastic Material|Viscoelastic]] (7) | |||
*** (See [[Transversely Isotropic Viscoelastic Material|TIViscoelastic]] (5) above) | |||
** [[First Order Phase Transition Material|PhaseTransition]] (30) | |||
** [[Rigid Material|Rigid]] (11) | |||
*** [[Rigid Material|RigidContact]] (35) | |||
*** [[Rigid Block Material|RigidBlock]] (36) | |||
** <font color="green">TractionLaw</font> | |||
*** [[Triangular Traction Law|TriangularTraction]] (12) | |||
**** [[Exponential Traction Law|ExponentialTraction]] (34) | |||
***** [[Trilinear Traction Law|TrilinearTraction]] (20) | |||
****** [[Mixed Mode Traction Law|MixedModeTraction]] (33) | |||
**** [[Coupled Traction Law|CoupledTraction]] (23) | |||
**** [[Linear Traction Law|LinearTraction]] (14) | |||
*** [[Cubic Traction Law|CubicTraction]] (14) | |||
*** [[Pressure Traction Law|PressureTraction]] (26) | |||
*** [[Cohesive Membrane Material|CohesiveMembrane]] (41) | |||
** <font color="green">ContactLaw</font> | |||
*** [[Ignore Contact Law|IgnoreContact]] (60) | |||
**** [[Coulomb Friction Law|CoulombFriction]] (61) | |||
***** [[Adhesive Friction Law| AdhesiveFriction]] (63) | |||
***** [[Liquid Wall Contact Law| LiquidContact]] (64) | |||
**** [[Linear Imperfect Interface|LinearInterface]] (62) | |||
***** [[Nonlinear Imperfect Interface|NonlinearInterface]] (65) | |||
****** [[Debonding Interface|DebondingInterface]] (66) | |||
== Material Class Ordered List == | |||
Here are the above material in numeric order by material ID: | |||
* 1: [[Isotropic Material|Isotropic]] | |||
* 2: [[Transversely Isotropic Material|Transverse]] | |||
* 3: (reserved for deprecated transversely isotropic material) | |||
* 4: [[Orthotropic Material|Orthotropic]] | |||
* 5: [[Transversely Isotropic Viscoelastic Material|TIViscoelastic]] | |||
* 6: (reserved for deprecated transversely isotropic viscoelastic material) | |||
* 7: [[Viscoelastic Material|Viscoelastic]] | |||
* 8: [[Mooney Material|Mooney]] | |||
* 9: [[Isotropic, Elastic-Plastic Material|IsoPlasticity]] | |||
* 10: [[Bistable Isotropic Material|Bistable]] | |||
* 11: [[Rigid Material|Rigid]] | |||
* 12: [[Triangular Traction Law|TriangularTraction]] (a [[Traction Laws|traction law material]]) | |||
* 13: [[Linear Traction Law|LinearTraction]] (a [[Traction Laws|traction law material]]) | |||
* 14: [[Cubic Traction Law|CubicTraction]] (a [[Traction Laws|traction law material]]) | |||
* 15: [[Anisotropic, Elastic-Plastic Material|HillPlastic]] | |||
* 20: [[Trilinear Traction Law|TrilinearTraction]] (a [[Traction Laws|traction law material]]) | |||
* 21: [[Anisotropic, Hyperelastic Material|HEAnisotropic]] | |||
* 22: [[Ideal Gas Material|IdealGas]] | |||
* 23: [[Coupled Traction Law|CoupledTraction]] (a [[Traction Laws|traction law material]]) | |||
* 24: [[Isotropic, Hyperelastic-Plastic Material|HEIsotropic]] | |||
* 25: [[Isotropic, Hyperelastic-Plastic Mie-Grüneisen Material|HEMGEOSMaterial]] | |||
* 26: [[Pressure Traction Law|PressureTraction]] (a [[Traction Laws|traction law material]]) | |||
* 27: [[Tait Liquid Material|TaitLiquid]] | |||
* 28: [[Neo-Hookean Material|Neohookean]] | |||
* 29: [[Clamped Neo-Hookean Material|ClampedNeohookean]] | |||
* 30: [[First Order Phase Transition Material|PhaseTransition]] | |||
* 31: [[Reaction Phase Material|ReactionPhase]] | |||
* 32: [[JWLPlusPlus Material|JWLPlusPlus]] | |||
* 33: [[Mixed Mode Traction Law|MixedModeTraction]] | |||
* 34: [[Exponential Traction Law|ExponentialTraction]] | |||
* 35: [[Rigid Material|RigidContact]] | |||
* 36: [[Rigid Block Material|RigidBlock]] | |||
* 40: [[Mooney Membrane Material|MooneyMembrane]] | |||
* 41: [[Cohesive Membrane Material|CohesiveMembrane]] | |||
* 50: [[Isotropic Softening Material|IsoSoftening]] | |||
* 51: [[Transversely Isotropic Softening Material|TransIsoSoftening]] | |||
* 52: (reserved for deprecated transversely isotropic softening material) | |||
* 53: [[Isotropic Plastic Softening Material|IsoPlasticSoftening]] | |||
* 54: [[Orthotropic Softening Material|OrthoSoftening]] | |||
* 55: [[Isotropic Plastic Interface|IsoPlasticInterface]] | |||
* 56: [[Orthotropic Plastic Softening Material|OrthoPlasticSoftening]] | |||
* 57: [[Isotropic Phase Field Softening Material|IsoPhaseFieldSoftening]] | |||
* 58: [[Isotropic Damage Mechanics|IsoDamageMechanics]] | |||
* 60: [[Ignore Contact Law|IgnoreContact]] (a [[Contact Laws|contact law material]]) | |||
* 61: [[Coulomb Friction Law|CoulombFriction]] (a [[Contact Laws|contact law material]]) | |||
* 63: [[Adhesive Friction Law| AdhesiveFriction]] (a [[Contact Laws|contact law material]]) | |||
* 64: [[Liquid Wall Contact Law| LiquidContact]] (a [[Contact Laws|contact law material]]) | |||
* 62: [[Linear Imperfect Interface|LinearInterface]] (a [[Contact Laws|contact law material]]) | |||
* 65: [[Nonlinear Imperfect Interface|NonlinearInterface]] (a [[Contact Laws|contact law material]]) | |||
* 66: [[Debonding Interface|DebondingInterface]] (a [[Contact Laws|contact law material]]) | |||
* 70: [[Isotropic Electro-Deposition Material|IsoED]] |
Latest revision as of 17:13, 19 June 2024
Numerous material models are available in NairnMPM. For those working with source code, you can create your own material types.
Define a Material
You create materials using a Material command block. Within that block all material properties are set using property commands. Refer to each material type to learn about its possible properties.
Linear Elastic Small Strain Materials
The materials in this section are all small-strain, linear elastic materials. They account for rotations by using a hypoelastic correction (using an approximate polar decomposition of the incremental deformation and done to second order in 2D and first order in 3D).
Name | ID | Description | Pσ | Pε | AS | 3D |
---|---|---|---|---|---|---|
Isotropic | 1 | Linear elastic, isotropic | X | X | X | X |
Transverse | 2 | Linear elastic, transversely isotropic with unique axis in the z direction | X | X | X | X |
Orthotropic | 4 | Linear elastic, orthotopic material | X | X | X | X |
Bistable | 10 | Elastic, isotropic material with two stable states having different properties | X | X | X |
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations.
Hyperelastic Materials
The materials in this section are designed to solve finite strain (or large deformation) problems. They are formulated using hyperelasticity methods.
Name | ID | Description | Pσ | Pε | AS | 3D |
---|---|---|---|---|---|---|
Mooney | 8 | Elastic, isotropic and Ideal Rubber Elasticity | X | X | X | X |
Neohookean | 28 | Elastic and isotropic material | X | X | X | X |
IdealGas | 22 | Ideal gas as a hyperelastic material | X | X | X | |
TaitLiquid | 27 | Newtonian liquid with Tait law for pressure dependence as a hyperelastic material | X | X | X | |
JWLPlusPlus | 22 | JWL++ Detonation Material | X | X | X |
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), with a 3D membrane (3M), or 3D calculations.
Elastic-Plastic Small Strain Materials
The materials in this section are all small-strain, elastic-plastic materials. They account for rotations by using a hypoelastic correction analagous to Jaumann Derivative methods. They handle plasticity by combining one of these materials with any compatible hardening law.
Name | ID | Description | Pσ | Pε | AS | 3D |
---|---|---|---|---|---|---|
IsoPlasticity | 9 | Small-strain, isotropic, elastic-plastic material | X | X | X | X |
HillPlastic | 15 | Anisotropic, elastic-plastic material. | X | X | X | X |
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations.
Hyperelastic-Plastic Materials
The materials in this section are formulated within the framework of hyper elasticity formulation. They can handle plasticity by combining them with any compatible hardening law.
Name | ID | Description | Pσ | Pε | AS | 3D |
---|---|---|---|---|---|---|
HEIsotropic | 24 | Isotropic, hyperelastic-plastic material | X | X | X | |
HEMGEOSMaterial | 25 | Isotropic, hyperelastic-plastic material using a Mie-Grüneisen equation of state. | X | X | X | |
ClampedNeohookean | 29 | Isotropic, hyperelastic-plastic material with tensile and compression elongations clamped to critical values. | X | X | X |
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations.
Softening Materials
The materials in this section will model material softening to emulate damage and fractures.
Name | ID | Description | Pσ | Pε | AS | 3D |
---|---|---|---|---|---|---|
IsoSoftening | 50 | Small-strain isotropic material with damage and softening | X | X | X | X |
IsoPlasticSoftening | 53 | Small-strain isotropic material that combines plasticity with damage and softening | X | X | X | X |
TransIsoSoftening | 51 | Small-strain transversely isotropic material with damage and softening and with unrotated axial direction in the z (or θ is axisymmetric) direction | X | X | X | |
OrthoSoftening | 54 | Small-strain orthotropic material with damage and softening | X | X | X | |
OrthoPlasticSoftening | 56 | Small-strain orthotropic material with damage, plasticity, and softening | X | X | X | |
IsoPhaseFieldSoftening | 57 | Isotropic phase field material for variational fracture mechanics | X | X | X | X |
IsoDamageMechanics | 58 | Isotropic material that damage by isotropic or scalar damage mechanics | X | X | X | X |
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations. Softening materials model failure by particle undergoing decohesion. The particle remain in the simulations and will continue to open their implied cracks. Alternativelym failure particles can be removed with the DeleteDamaged Custom Task.
Viscoelastic Materials
The materials in this section are viscoelastic materials.
Name | ID | Description | Pσ | Pε | AS | 3D |
---|---|---|---|---|---|---|
Viscoelastic | 7 | Small-strain, linear viscoelastic material with sum of relaxation times | X | X | X | X |
TIViscoelastic | 5 | Small-strain transversely isotropic material for linear viscoelasticity with unrotated axial direction in the z (or θ is axisymmetric) direction | X | X | X | X |
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations.
Phase Transition Materials
The materials in this section control phase transitions between two other materials.
Name | ID | Description | Pσ | Pε | AS | 3D |
---|---|---|---|---|---|---|
PhaseTransition | 30 | A first order phase transition between two materials | X | X | X |
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations.
Membrane Materials
The materials in this section will model membranes using lines of particles in 2D or planes of particles in 3D. Membranes are in development and only available in OSParticulas. They have been useful in some simulations. They are based in deformation within the membrane and likely do not model bending stiffness well. Further development is needed.
Name | ID | Description | 2M | 3M |
---|---|---|---|---|
MooneyMembrane | 40 | Membrane material based on a Mooney-Rivlin material | X | X |
HEAnisotropic | 21 | Anisotropic, hyperelastic material | X | X |
The table columns on the right indicate if each material can be used for a membrane in 2D calculations (2M) or in 3D calculations (3M).
Rigid Materials
Rigid materials can be used either to apply moving velocity, temperature, or concentration boundary conditions or to interact with non-rigid material by contact mechanics.
Name | ID | Description | Pσ | Pε | AS | 3D |
---|---|---|---|---|---|---|
RigidBC | 11 | A rigid material that sets moving boundary conditions on the grid | X | X | X | X |
RigidContact | 35 | A rigid material that that interacts with other materials by contact | X | X | X | X |
RigidBlock | 36 | A rigid material that that interacts with other materials by contact and whose motion is driven by contact forces | X | X | X | X |
The table columns on the right indicate if each material can be used in plane stress (Pσ), plane strain (Pε), axisymmetric (AS), or 3D calculations.
Material Class Hierarchy
Materials are C++ classes. The following class hierarchy shows the orginzation of those C++ classes in the NairnMPM source code. A material in green is an abstract class that is never assigned to particles. All others are material classes (by their name or their ID in parentheses). For those creating their own materials, they must be inserted in this hierarchy using a unique name and ID:
- MaterialBase
- Elastic
- Isotropic (1)
- IsoPlasticity (9)
- Bistable (10)
- IsoSoftening (50)
- IsoPlasticSoftening (53)
- IsoDamageMechanics (58)
- IsoPhaseFieldSoftening (57)
- Transverse (2)
- Orthotropic (4)
- AnisoPlasticity
- HillPlastic (15)
- AnisoPlasticity
- TransIsoSoftening (51)
- OrthoSoftening (54)
- TIViscoelastic (5)
- Orthotropic (4)
- Isotropic (1)
- HyperElastic
- Mooney (8)
- MooneyMembrane (40)
- HEIsotropic (24)
- HEMGEOSMaterial (25)
- IsoED (70)
- HEAnisotropic (21)
- IdealGas (22)
- TaitLiquid (27)
- Neohookean (28)
- ClampedNeohookean (29)
- ReactionPhase (31)
- JWLPlusPlus (32)
- Mooney (8)
- Viscoelastic (7)
- (See TIViscoelastic (5) above)
- PhaseTransition (30)
- Rigid (11)
- RigidContact (35)
- RigidBlock (36)
- TractionLaw
- TriangularTraction (12)
- ExponentialTraction (34)
- TrilinearTraction (20)
- MixedModeTraction (33)
- TrilinearTraction (20)
- CoupledTraction (23)
- LinearTraction (14)
- ExponentialTraction (34)
- CubicTraction (14)
- PressureTraction (26)
- CohesiveMembrane (41)
- TriangularTraction (12)
- ContactLaw
- IgnoreContact (60)
- CoulombFriction (61)
- AdhesiveFriction (63)
- LiquidContact (64)
- LinearInterface (62)
- NonlinearInterface (65)
- DebondingInterface (66)
- NonlinearInterface (65)
- CoulombFriction (61)
- IgnoreContact (60)
- Elastic
Material Class Ordered List
Here are the above material in numeric order by material ID:
- 1: Isotropic
- 2: Transverse
- 3: (reserved for deprecated transversely isotropic material)
- 4: Orthotropic
- 5: TIViscoelastic
- 6: (reserved for deprecated transversely isotropic viscoelastic material)
- 7: Viscoelastic
- 8: Mooney
- 9: IsoPlasticity
- 10: Bistable
- 11: Rigid
- 12: TriangularTraction (a traction law material)
- 13: LinearTraction (a traction law material)
- 14: CubicTraction (a traction law material)
- 15: HillPlastic
- 20: TrilinearTraction (a traction law material)
- 21: HEAnisotropic
- 22: IdealGas
- 23: CoupledTraction (a traction law material)
- 24: HEIsotropic
- 25: HEMGEOSMaterial
- 26: PressureTraction (a traction law material)
- 27: TaitLiquid
- 28: Neohookean
- 29: ClampedNeohookean
- 30: PhaseTransition
- 31: ReactionPhase
- 32: JWLPlusPlus
- 33: MixedModeTraction
- 34: ExponentialTraction
- 35: RigidContact
- 36: RigidBlock
- 40: MooneyMembrane
- 41: CohesiveMembrane
- 50: IsoSoftening
- 51: TransIsoSoftening
- 52: (reserved for deprecated transversely isotropic softening material)
- 53: IsoPlasticSoftening
- 54: OrthoSoftening
- 55: IsoPlasticInterface
- 56: OrthoPlasticSoftening
- 57: IsoPhaseFieldSoftening
- 58: IsoDamageMechanics
- 60: IgnoreContact (a contact law material)
- 61: CoulombFriction (a contact law material)
- 63: AdhesiveFriction (a contact law material)
- 64: LiquidContact (a contact law material)
- 62: LinearInterface (a contact law material)
- 65: NonlinearInterface (a contact law material)
- 66: DebondingInterface (a contact law material)
- 70: IsoED