Difference between revisions of "Johnson-Cook Hardening"

From OSUPDOCS
Jump to navigation Jump to search
Line 1: Line 1:
In the Johnson-Cook [[Hardening Laws|hardening law]], the yield stress is given by
In the Johnson-Cook [[Hardening Laws|hardening law]], the yield stress is given by


     
<math>\sigma_y = \left(A + B\alpha^n\right)\left(1 + C \ln {\dot\alpha\over \dot\varepsilon_p^0}\right)\left(1-T_r^m\right)</math>
<math>\sigma_y = \left(A + B\alpha^n\right)\left(1 + C \ln {\dot\alpha\over \dot\varepsilon_p^0}\right)\left(1-T_r^m\right)</math>


where &alpha; is cumulative equivalent plastic strain, <math>\dot\alpha</math> is plastic strain rate, and the reduced temperature (T<sub>r</sub>) is given by:
where &alpha; is cumulative equivalent plastic strain, <math>\dot\alpha</math> is plastic strain rate, and the reduced temperature (T<sub>r</sub>) is given by:


&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>T_r = {T-T_0\over T_m-T_0}</math>
<math>T_r = {T-T_0\over T_m-T_0}</math>


Line 39: Line 41:
This [[Hardening Laws|hardening law]]  defines one history variable, which is stored as history variable #1. It stores the the cumulative equivalent plastic strain (absolute) defined as
This [[Hardening Laws|hardening law]]  defines one history variable, which is stored as history variable #1. It stores the the cumulative equivalent plastic strain (absolute) defined as


&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>\alpha = \sum \sqrt{2\over3}\ ||d\varepsilon_p||</math>
<math>\alpha = \sum \sqrt{2\over3}\ ||d\varepsilon_p||</math>



Revision as of 10:51, 22 May 2013

In the Johnson-Cook hardening law, the yield stress is given by

      [math]\displaystyle{ \sigma_y = \left(A + B\alpha^n\right)\left(1 + C \ln {\dot\alpha\over \dot\varepsilon_p^0}\right)\left(1-T_r^m\right) }[/math]

where α is cumulative equivalent plastic strain, [math]\displaystyle{ \dot\alpha }[/math] is plastic strain rate, and the reduced temperature (Tr) is given by:

      [math]\displaystyle{ T_r = {T-T_0\over T_m-T_0} }[/math]

where T0 is the reference temperature, which is equal to the current stress free temperature. For more details see paper by Johnson and Cook[1].

Hardening Law Properties

The material parameters in this hardening law are defined by A, B, C, n, m, [math]\displaystyle{ \dot\varepsilon_p^0 }[/math], and Tm. These parameters are set with the following properties:

Property Description
Ajc Parameter A and equal to the initial yield stress at the reference strain rate and the reference temperature. Enter in units of MPa.
Bjc The hardening term B. Enter in units of MPa.
njc Exponent on cumulative equivalent plastic strain in hardening term (n). It is dimensionless.
Cjc Coefficient for rate-dependent term (C). It is dimensionless
ep0jc Reference strain rate ([math]\displaystyle{ \dot\varepsilon_p^0 }[/math]) for reference yield stress in A. It has units sec-1.
Tmjc The material's melting point (Tm). Above this temperature the yield strength will be zero. It has units degree K.
mjc Exponent on reduced temperature that defines the temperature dependence of the yield stress.

The reference temperature, T0, is set using the simulation's stress free temperature and not set by using hardening law properties.

History Data

This hardening law defines one history variable, which is stored as history variable #1. It stores the the cumulative equivalent plastic strain (absolute) defined as

      [math]\displaystyle{ \alpha = \sum \sqrt{2\over3}\ ||d\varepsilon_p|| }[/math]

where dεp is the incremental plastic strain tensor in one time step.

  1. G. R. Johnson and W. H. Cook, "A constitutive model and data for metals subjected to large strains, high strain rates ad high temperatures," Proceedings of the 7th International Symposium on Ballistics, 541-547 (1983).