Difference between revisions of "Exponential Softening"

From OSUPDOCS
Jump to navigation Jump to search
Line 12: Line 12:
<math>\max\bigl(f'(\delta,s)\bigr) < {1\over sG_c}</math>
<math>\max\bigl(f'(\delta,s)\bigr) < {1\over sG_c}</math>


where s is the [[Softening Laws#Normalized Softening Law|softening scaling term]] and G<sub>c</sub> is toughness of the law (and the law's only property). This law never fails, although the traction asymptotically approaches zero. The exponential decay rate, $k$, is
where s is the [[Softening Laws#Normalized Softening Law|softening scaling term]] and G<sub>c</sub> is toughness of the law (and the law's only property). This law never fails, although the traction asymptotically approaches zero. The exponential decay rate, ''k'', is


&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;

Revision as of 14:02, 25 December 2016

The Softening Law

An exponential softening law has the following values:

      [math]\displaystyle{ f(\delta,s) = e^{-\delta/(sG_c)} }[/math]

      [math]\displaystyle{ A(\delta,s) = cG_c - e^{-\delta/(sG_c)}\left(sG_c+{\delta\over2}\right) }[/math]

[math]\displaystyle{ \max\bigl(f'(\delta,s)\bigr) \lt {1\over sG_c} }[/math]

where s is the softening scaling term and Gc is toughness of the law (and the law's only property). This law never fails, although the traction asymptotically approaches zero. The exponential decay rate, k, is

      [math]\displaystyle{ k = sG_c }[/math]

Softening Law Properties

Only one property is needed to define an exponential softening law:

Property Description Units Default
Gc The toughness associated with the this softening law energy release units none

Note that softening materials