Difference between revisions of "Linear Softening"

From OSUPDOCS
Jump to navigation Jump to search
Line 11: Line 11:
     
     
<math>sG_c = \int_0^{\delta_{max}} f(\delta,s) = {\delta_{max}\over 2} \quad{\rm or}\quad \delta_{max} = 2sG_c</math>
<math>sG_c = \int_0^{\delta_{max}} f(\delta,s) = {\delta_{max}\over 2} \quad{\rm or}\quad \delta_{max} = 2sG_c</math>
where ''s'' is the [[Softening Laws#Normalized Softening Law|softening scaling term]] and ''G<sub>c</sub>'' is toughness of the law (and the law's only property).
The critical cracking strain, which depends on mesh size and crack orientation, is calculated above and is not a law property to be provided.


The area (or energy dissipation term) is
The area (or energy dissipation term) is
Line 21: Line 24:
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>\max\bigl(-f'(\delta,s)\bigr) =  {1\over \delta_{max}} = {1\over 2sG_c}</math>
<math>\max\bigl(-f'(\delta,s)\bigr) =  {1\over \delta_{max}} = {1\over 2sG_c}</math>
where ''s'' is the [[Softening Laws#Normalized Softening Law|softening scaling term]] and ''G<sub>c</sub>'' is toughness of the law (and the law's only property). The critical cracking strain, which depends on mesh size and crack orientation, is calculated above and is not a law property to be provided.


== Softening Law Properties ==
== Softening Law Properties ==

Revision as of 10:51, 27 December 2016

The Softening Law

A linear softening law has the following values:

      [math]\displaystyle{ f(\delta,s) = 1 - {\delta\over \delta_{max} } = 1 - {\delta\over 2sG_c} }[/math]

which follows from

      [math]\displaystyle{ sG_c = \int_0^{\delta_{max}} f(\delta,s) = {\delta_{max}\over 2} \quad{\rm or}\quad \delta_{max} = 2sG_c }[/math]

where s is the softening scaling term and Gc is toughness of the law (and the law's only property). The critical cracking strain, which depends on mesh size and crack orientation, is calculated above and is not a law property to be provided.

The area (or energy dissipation term) is

      [math]\displaystyle{ A(\delta,s) = {\delta\over 2} }[/math]

The stability condition is:

      [math]\displaystyle{ \max\bigl(-f'(\delta,s)\bigr) = {1\over \delta_{max}} = {1\over 2sG_c} }[/math]

Softening Law Properties

Only one property is needed to define a linear softening law:

Property Description Units Default
Gc The toughness associated with the this softening law energy release units none

Note that softening materials