Difference between revisions of "Linear Softening"
Line 13: | Line 13: | ||
where ''s'' is the [[Softening Laws#Normalized Softening Law|softening scaling term]] and ''G<sub>c</sub>'' is toughness of the law (and the law's only property). | where ''s'' is the [[Softening Laws#Normalized Softening Law|softening scaling term]] and ''G<sub>c</sub>'' is toughness of the law (and the law's only property). | ||
The critical cracking strain, <math>\delta_{max}</math>, which depends on mesh size and crack orientation, is calculated | The critical cracking strain, <math>\delta_{max}</math>, which depends on mesh size and crack orientation, is calculated from ''s'' and ''G<sub>c</sub>'' and is not a law property to be provided. | ||
The area (or energy dissipation term) is | The area (or energy dissipation term) is |
Revision as of 13:16, 4 September 2017
The Softening Law
A linear softening law has the following values:
[math]\displaystyle{ f(\delta,s) = 1 - {\delta\over \delta_{max} } = 1 - {\delta\over 2sG_c} }[/math]
which follows from
[math]\displaystyle{ sG_c = \int_0^{\delta_{max}} f(\delta,s) = {\delta_{max}\over 2} \quad{\rm or}\quad \delta_{max} = 2sG_c }[/math]
where s is the softening scaling term and Gc is toughness of the law (and the law's only property). The critical cracking strain, [math]\displaystyle{ \delta_{max} }[/math], which depends on mesh size and crack orientation, is calculated from s and Gc and is not a law property to be provided.
The area (or energy dissipation term) is
[math]\displaystyle{ A(\delta,s) = {\delta\over 2} }[/math]
The stability condition is:
[math]\displaystyle{ \max\bigl(-f'(\delta,s)\bigr) = {1\over \delta_{max}} = {1\over 2sG_c} }[/math]
Softening Law Properties
Only one property is needed to define a linear softening law:
Property | Description | Units | Default |
---|---|---|---|
Gc | The toughness associated with the this softening law | energy release units | none |