Difference between revisions of "Transversely Isotropic Softening Material"

From OSUPDOCS
Jump to navigation Jump to search
 
(53 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Constitutive Law ==
== Constitutive Law ==


This [[Material Models|MPM Material]] is a transversely isotropic, elastic material, but once it fails, it develops anisotropic damage. The material is available only in [[OSParticulas]] (and still in development).The constitutive law for this material is
This [[Material Models#Softening Materials|MPM softening material]] is a transversely isotropic, elastic material, but once it fails, it develops anisotropic damage and will become orthotropic. The constitutive law for this material is


     
     
Line 8: Line 8:
where '''C''' is stiffness tensor for the underlying transversely isotropic material and '''D''' is an anisotropic 4<sup>th</sup> rank damage tensor appropriate for damage in transversely isotropic materials, and <math>\mathbf{\varepsilon}_{res}</math> is any residual strain (such as thermal or solvent induced strains).
where '''C''' is stiffness tensor for the underlying transversely isotropic material and '''D''' is an anisotropic 4<sup>th</sup> rank damage tensor appropriate for damage in transversely isotropic materials, and <math>\mathbf{\varepsilon}_{res}</math> is any residual strain (such as thermal or solvent induced strains).


The MPM implementation of softening isotropic materials is described in Nairn, Hammerquist, and Aimene<ref name="dmref">J. A. Nairn, C. Hammerquist, and Y. E. Aimene (2016), Numerical Implementation of Anisotropic Damage Mechanics, submitted.</ref> The extension to transversely isotropic will be in a future publication.
The MPM implementation of softening isotropic materials is described in Nairn, Hammerquist, and Aimene<ref name="dmref">J. A. Nairn, C. C. Hammerquist, and Y. E. Aimene, "Numerical Implementation of Anisotropic Damage Mechanics," Int. J. for Numerical Methods in Engineering, 112(12), 1846-1868 (2017). [http://www.cof.orst.edu/cof/wse/faculty/Nairn/papers/MPMSoftening.pdf PDF]</ref> This extension to transversely isotropic will be in a future publication.


=== TransIsoSoftening 1 and 2 ===
== Damage Process ==


TransIsoSoftening 1 and TransIsoSoftening 2 give identical materials but with different initial orientations. TransIsoSoftening 1 has the unrotated axial direction along the z (or &theta; if axisymmetric) axis while TransIsoSoftening 2 has unrotated axial direction along the y (or Z if axisymmetric) axis. You can change the unrotated direction to any other orientation when defining material points (in MPM) or elements (in FEA) by selecting rotation angles for particles or elements. For 2D analyses, the two options allow for axial direction in the x-y (or r-&theta; if axisymmetric) analysis plane (TransIsoSoftening 2) or normal to that plane (TransIsoSoftening 1). For 3D analyses, only TransIsoSoftening 1 is allowed.
The current implementation limits crack formation such that the crack normal is normal to a symmetry direction of the material. This approach means cracks either have the normal in the axial direction or perpendicular to the axial direction. Crack growth in material symmetry direction within these two planes suggest a material defined by three critical toughness values:


== Damage Initiation ==
# G<sub>AT,c</sub> - toughness for crack growth in plane with normal in the axial direction. Because this crack plane is the material's isotropic plane, the toughness should be the same for all crack growth directions within that plane.
# G<sub>TA,c</sub> and G<sub>TT,c</sub> - toughness for crack growth in plane with normal in the transverse direction. Within this plane, the crack may propagate in the axial direction (by toughness G<sub>TA,c</sub>) or in the transverse direction (by toughness G<sub>TT,c</sub>).


Damage initiation is controlled by attaching a [[Damage Initiation Laws|damage initiation law]] to the material. These laws define a failure envelop. Once the response reaches the envelop, the damage process is initiated and the normal to the crack plane is calculated depending on type of failure. The normal is need to find the anisotropic '''D''' tensor (which involves rotating analysis into the crack axis system where the ''x'' axis is aligned with the crack normal.
In other words, the first letter in the toughness subscript is the normal to the crack plane while the second is the crack propagation direction within that plane. Each of these crack paths may be loaded in tension (mode I) or shear (mode II) leading to six toughness values. This material seeks to model all these crack options. Because a material point is either failed or not failed, it is not possible to separate the two mode I paths in the transverse plane. We are thus left with five fracture process and five toughness values:


The only damage surface currently allowed for a transversely isotropic softening material is the [[Transversely Isotropic Failure Surface|TIFailure initiation law]].
# G<sub>AT,c</sub><sup>(I)</sup> - mode I crack growth in plane with normal in axial direction
# G<sub>AT,c</sub><sup>(II)</sup> - mode II crack growth in plane with normal in axial direction
# G<sub>T,c</sub><sup>(I)</sup> - mode I crack growth in plane with normal in transverse direction (an average of all direction is that plane)
# G<sub>TA,c</sub><sup>(II)</sup> - mode II crack growth in plane with normal in transverse direction for crack propagating in axial direction
# G<sub>TT,c</sub><sup>(II)</sup> - mode II crack growth in plane with normal in transverse direction for crack propagating in transverse direction


== Damage Evolution ==
=== Damage Initiation and Propagation ===


Damage evolution is determined by [[Softening Laws|softening laws]] laws to predict degradation of normal and shear tractions across the crack plane. You need to attach four [[Softening Laws|softening laws]] to this material. These two laws handle degradation of axial modulus (E<sub>A</sub>), axial shear modulus (G<sub>A</sub>), transverse tensile modulus (E<sub>T</sub>) and transverse shear modulus (G<sub>T</sub>). Areas under these laws correspond to fracture toughnesses ''G<sub>Ic</sub>'' and lumped ''G<sub>IIc</sub>''/''G<sub>IIIc</sub>'' for the material for various crack orientations.
Damage initiation is controlled by attaching a [[Damage Initiation Laws|damage initiation law]] to the material. These laws define a failure envelop. Once the response reaches the envelop, the damage process is initiated and the normal to the crack plane is calculated depending on type of failure. The normal is needed to find the anisotropic '''D''' tensor (which involves rotating analysis into the crack axis system where the ''x'' axis is aligned with the crack normal. The only damage surface currently allowed for a transversely isotropic softening material is the [[Transversely Isotropic Failure Surface|TIFailure initiation law]]. Damage propagation and evolution is determined by [[Softening Laws|softening laws]] laws to predict degradation of normal and shear tractions across the crack plane.


In brief, this material models crack initiation and propagation through damage mechanics. The softening law properties tie the damage mechanics to toughness properties for the material. The scheme can handle interacting cracks (which become interacting damage zones) and 3D cracks.
Full definition of a transversely isotropic requires specification of a strength and a softening law corresponding to each of the five modeled crack propagation modes described above:
 
# G<sub>AT,c</sub><sup>(I)</sup> - strength is sigmacA, softening law is softeningAI (i.e., for axial failure in mode I)
# G<sub>AT,c</sub><sup>(II)</sup> - strength is taucT, softening law is softeningTII
# G<sub>T,c</sub><sup>(I)</sup> - strength is sigmac, softening law is softeningI (inhereted from [[Isotropic Softening Material]])
# G<sub>TA,c</sub><sup>(II)</sup> - strength is taucA, softening law is softeningAII
# G<sub>TT,c</sub><sup>(II)</sup> - strength is tauc, softening law is softeningII (inhereted from [[Isotropic Softening Material]])
 
You need to attach five strengths and five [[Softening Laws|softening laws]] to this material. In brief, this material models crack initiation and propagation through damage mechanics. The softening law properties tie the damage mechanics to toughness properties for the material. The scheme can handle all modeled failure modes, interacting cracks (which become interacting damage zones), and 3D cracks.
 
The damage evolves during a simulation, but, if desired, predamage on any particle at the start of a simulation can be set using [[Setting Forces and Fluxes#Initial Particle Damage|initial particle damage]] using [[Particle-Based Boundary Conditions|particle boundary conditions]].


== Material Properties ==
== Material Properties ==


When the material is undamaged, its response is identical to properties entered for the underlying [[Transversely Isotropic Material|transversely isotropic material]]. Once those are specified, you have to attach one [[Damage Initiation Laws|damage initiation law]] and four [[Softening Laws|softening laws]] to define how the material responds after initiation of damage.
When the material is undamaged, its response is identical to properties entered for the underlying [[Transversely Isotropic Material|transversely isotropic material]]. Once those are specified, you have to attach one [[Damage Initiation Laws|damage initiation law]] and five [[Softening Laws|softening laws]], and all properties needed by those laws. These properties determine how the material responds after initiates and propagates damage.


{| class="wikitable"
{| class="wikitable"
Line 36: Line 51:
| ([[Transversely Isotropic Material#Material Properties|Transversely Isotropic Properties]]) || Enter all properties needed to define the underlying transversely isotropic material response || varies || varies
| ([[Transversely Isotropic Material#Material Properties|Transversely Isotropic Properties]]) || Enter all properties needed to define the underlying transversely isotropic material response || varies || varies
|-
|-
| Initiation || Attach [[Damage Initiation Laws|damage initiation law]] by name or ID that is compatible with isotropic materials. Once attached, enter all required material properties for that law. || none || TIFailure
| Initiation || Attach [[Damage Initiation Laws|damage initiation law]] by name or ID that is compatible with this material. Once attached, enter all required strength properties for that law. || none || TIFailure
|-
| SofteningAI || Attach a [[Softening Laws|softening law]] (by name or ID) for propagation of tensile damage by G<sub>AT,c</sub><sup>I</sup> crack growth. Once attached, enter all required properties for that law by prefacing each property with "AI-". || none || Linear
|-
| SofteningTII || Attach a [[Softening Laws|softening law]] (by name or ID) for propagation of shear damage by G<sub>AT,c</sub><sup>II</sup> crack growth. Once attached, enter all required properties for that law by prefacing each property with "TII-". || none || Linear
|-
| SofteningI || Attach a [[Softening Laws|softening law]] (by name or ID) for propagation of tensile damage by G<sub>T,c</sub><sup>II</sup> crack growth. Once attached, enter all required properties for that law by prefacing each property with "I-". || none || Linear
|-
|-
| SofteningEA || Attach a [[Softening Laws|softening law]] (by name or ID) for propagation of tensile damage that changes E<sub>A</sub>. Once attached, enter all required properties for that law by prefacing each property with "EA-". || none || Linear
| SofteningAII || Attach a [[Softening Laws|softening law]] (by name or ID) for propagation of shear damage by G<sub>TA,c</sub><sup>II</sup> crack growth. Once attached, enter all required properties for that law by prefacing each property with "AII-". || none || Linear
|-
|-
| SofteningGA || Attach a [[Softening Laws|softening law]] (by name or ID) for propagation of shear damage that changes G<sub>A</sub>. Once attached, enter all required properties for that law by prefacing each property with "GA-". || none || Linear
| SofteningII || Attach a [[Softening Laws|softening law]] (by name or ID) for propagation of shear damage by G<sub>TT,c</sub><sup>II</sup> crack growth. Once attached, enter all required properties for that law by prefacing each property with "II-". || none || Linear
|-
|-
| SofteningET || Attach a [[Softening Laws|softening law]] (by name or ID) for propagation of tensile damage that changes E<sub>T</sub>. Once attached, enter all required properties for that law by prefacing each property with "ET-". || none || Linear
| tractionFailureSurface || Select traction failure surface assumed that determines coupling between anisotropic damage mechanics parameters. The options are 0 = cuboid and 2 or 3 = coupled. For cuboid, the three damage parameters evolve independently. For coupled cuboid, the damage parameters are coupled such that all tractions simultaneously reach zero at failure. || none || 0
|-
|-
| SofteningGT || Attach a [[Softening Laws|softening law]] (by name or ID) for propagation of shear damage that changes G<sub>T</sub>. Once attached, enter all required properties for that law by prefacing each property with "GT-". || none || Linear
| coefVariation<br>wShape<br>wV0<br>statDistributionMode || See the corresponding properties defined for an [[Isotropic Softening Material#Material Properties|Isotropic softening material]]. || ||
|-
|-
| shearFailureSurface || Select failure surface assumed when modeling shear damage in 3D calculations. Use 1 for an elliptical failure criterion based on current degraded shear strengths. Use 0 for a rectangular failure surface that encloses the elliptical failure criterion. The elliptical surface is preferred, but rectangular is more efficient. || none || 1
| coeff || coefficient of friction for post-decohesion contact (default is 0 or frictionless) || none || 0
|-
|-
| ([[Common Material Properties|other]]) || Properties common to all materials || varies || varies
| ([[Common Material Properties|other]]) || Properties common to all materials || varies || varies
|}
|}
=== Deprecated Material Properties ===
Prior to the <tt>swapz</tt> material property, there were two types on transversely isotropic softening materials named "TransIsoSoftening 1" and "TransIsoSoftening 2". Although these can still be used as the material type, they are deprecated. The prior "TransIsoSoftening 1" is identical to this material with <tt>swapz=0</tt>. The prior "TransIsoSoftening 2" material is identical to this material with <tt>swapz=1</tt>.


== History Variables ==
== History Variables ==
Line 55: Line 80:
This material stores several history variables that track the extent of the damage and orientation of the damage plane:
This material stores several history variables that track the extent of the damage and orientation of the damage plane:


# 0, 0.75, 0.8, 0.85, 0.95, 1.05, 1.15, 1.25, or 1 higher than previous 7 to indicate undamaged (0), damage propagation (0.75, 0.8, 0.85, 0.95, 1.05, 1.15, 1.25), or post failure (decohesion) state of the particle.
# A flag to indicate damage process:
#* 0.75, 0.8, or 0.85 indicate failure by transverse tension, axial shear, or rolling shear and axial direction along z axis in the crack axis system
#* 0.1: undamaged material point
#* 0.95 or 1.05 indicate failure by axial tension or transverse shear and axial direction along x axis in the crack axis system
#* 1.0±0.25: damage initiated and evolving
#* 1.15 or 1.25 indicate failure by axial shear or transverse tension and axial direction along y axis in the crack axis system
#* 2.0±0.25: material point has failed (decohesion)
#* Within the above ranges for initiated and failed particles, the specific value tells how the damage initiated and the orientation of the material's axial direction in the crack axis system:
#** 0.75/1.75/1.25/2.25: Tensile failure transverse to axial direction (sigmac failure)
#*** 0.75/1.75: Material axial direction along z axis in the crack axis system
#*** 1.25/2.25: Material axial direction along y axis in the crack axis system
#** 0.95/1.95: Tensile failure in the axial direction (sigmacA failure)
#*** Material axial direction along x axis in the crack axis system
#** 0.80/1.15/1.80/2.15: Shear fail in axial plane with crack path in the axial direction (taucA failure)
#*** 0.80/1.80: Material axial direction along z axis in the crack axis system
#*** 1.15/2.15: Material axial direction along y axis in the crack axis system
#** 1.05/2.05: Shear fail in axial plane with crack path in the transverse direction (taucT failure)
#*** Material axial direction along x axis in the crack axis system
#** 0.85/1.85: Shear failure in isotropic plane (tauc failure)
#*** Material axial direction along z axis in the crack axis system
# δ<sub>n</sub> or the maximum normal cracking strain.
# δ<sub>n</sub> or the maximum normal cracking strain.
# δ<sub>xy</sub> or the maximum x-y shear cracking strain.
# δ<sub>xy</sub> or the maximum x-y shear cracking strain.
# δ<sub>xz</sub> or the maximum x-z cracking strain (zero for 2D).
# δ<sub>xz</sub> or the maximum x-z cracking strain (3D), but changes to mode I dissipated energy for 2D.
# d<sub>n</sub> or damage variable for normal loading. It varies from 0 to 1 where 1 is complete damage or failure.
# d<sub>n</sub> or damage variable for normal loading (varies from 0 to 1 where 1 is complete damage or failure).
# d<sub>xy</sub> or damage variable for x-y shear loading. It varies from 0 to 1 where 1 is complete damage or failure.
# d<sub>xy</sub> or damage variable for x-y shear loading (varies from 0 to 1 where 1 is complete damage or failure; for cuboid), but changes to mode I dissipated energy for 3D ovoid.
# d<sub>xz</sub> or damage variable for x-z shear loading. It varies from 0 to 1 where 1 is complete damage or failure (zero for 2D).
# d<sub>xz</sub> or damage variable for x-z shear loading (varies from 0 to 1 where 1 is complete damage or failure; for 3D cuboid only),  but changes to mode II dissipated energy for all others.
# For 2D it is cos(θ), but for 3D it is Euler angle α.
# For 2D it is cos(θ), but for 3D it is Euler angle α.
# For 2D it is sin(θ), but for 3D it is Euler angle β.
# For 2D it is sin(θ), but for 3D it is Euler angle β.
# For 2D it is not used, but for 3D it is Euler angle γ.
# For 2D it is not used, but for 3D it is Euler angle γ.
# ''A<sub>c</sub>''/''V<sub>p</sub>'' where ''A<sub>c</sub>'' is crack area within the particle and ''V<sub>p</sub>'' is particle volume.
# ''A<sub>c</sub>''/''V<sub>p</sub>'' where ''A<sub>c</sub>'' is crack area within the particle and ''V<sub>p</sub>'' is particle volume.
# Relative strength derived at the start by <tt>coefVariation</tt> and <tt>coefVariationMode</tt> properties.
# Relative toughness derived at the start by <tt>coefVariation</tt> and <tt>coefVariationMode</tt> properties.


Variables 8-10 define the normal to the damage crack plane. For 2D, θ is the counter clockwise angle from the x axis to the crack normal. For 3D, (α, β, γ) are the three Euler angles for the normal direction using a Z-Y-Z rotation scheme. You can use the [[MPM Archiving Options|<tt>damagenormal</tt> archiving option]] to save enough information for plotting the normal.
Variables 8-10 define the normal to the damage crack plane. For 2D, θ is the counter clockwise angle from the x axis to the crack normal. For 3D, (α, β, γ) are the three Euler angles for the normal direction using a Z-Y-Z rotation scheme. You can use the [[MPM Archiving Options|<tt>damagenormal</tt> archiving option]] to save enough information for plotting the normal. Although damaged normal is a unit vector, it is archived with magnitude equal to ''A<sub>c</sub>''/''V<sub>p</sub>'' (which gets another history variable archived and the value is used for some visualization options).


This material also tracks the cracking strain which can be saved by using the  [[MPM Archiving Options|<tt>plasticstrain</tt> archiving option]]. The strain is archived in the global axis system. If you also [[MPM Archiving Options|archive the <tt>damagenormal</tt>]], you will be able to plot a vector along the crack-opening displacement vector.
This material also tracks the cracking strain which can be saved by using the  [[MPM Archiving Options|<tt>plasticstrain</tt> archiving option]]. The strain is archived in the global axis system. If you also [[MPM Archiving Options|archive the <tt>damagenormal</tt>]], you will be able to plot a vector along the crack-opening displacement vector.


== Examples ==
== Examples ==
This example can be a starting point for modeling of wood
  Material "wood","Douglas fir","TransIsoSoftening"&#type$
    EA 12000
    ET 900
    GA 800
    nuT .4
    nuA .33
    alphaA 0
    alphaT 40
    rho 0.5
    largeRotation 1
    Initiation "TIFailure"
    sigmac 10
    tauc 3
    sigmacA 100
    taucA 10
    taucT 30
    strengthCoefVariation 0.3
    AI-Gc 1200
    AII-Gc 600
    TII-Gc 800
    I-Gc 200
    II-Gc 400
  Done


== References ==
== References ==


<references/>
<references/>

Latest revision as of 18:28, 17 April 2024

Constitutive Law

This MPM softening material is a transversely isotropic, elastic material, but once it fails, it develops anisotropic damage and will become orthotropic. The constitutive law for this material is

      [math]\displaystyle{ \mathbf{\sigma} = (\mathbf{I} - \mathbf{D}) \mathbf{C}( \mathbf{\varepsilon}- \mathbf{\varepsilon}_{res}) }[/math]

where C is stiffness tensor for the underlying transversely isotropic material and D is an anisotropic 4th rank damage tensor appropriate for damage in transversely isotropic materials, and [math]\displaystyle{ \mathbf{\varepsilon}_{res} }[/math] is any residual strain (such as thermal or solvent induced strains).

The MPM implementation of softening isotropic materials is described in Nairn, Hammerquist, and Aimene[1] This extension to transversely isotropic will be in a future publication.

Damage Process

The current implementation limits crack formation such that the crack normal is normal to a symmetry direction of the material. This approach means cracks either have the normal in the axial direction or perpendicular to the axial direction. Crack growth in material symmetry direction within these two planes suggest a material defined by three critical toughness values:

  1. GAT,c - toughness for crack growth in plane with normal in the axial direction. Because this crack plane is the material's isotropic plane, the toughness should be the same for all crack growth directions within that plane.
  2. GTA,c and GTT,c - toughness for crack growth in plane with normal in the transverse direction. Within this plane, the crack may propagate in the axial direction (by toughness GTA,c) or in the transverse direction (by toughness GTT,c).

In other words, the first letter in the toughness subscript is the normal to the crack plane while the second is the crack propagation direction within that plane. Each of these crack paths may be loaded in tension (mode I) or shear (mode II) leading to six toughness values. This material seeks to model all these crack options. Because a material point is either failed or not failed, it is not possible to separate the two mode I paths in the transverse plane. We are thus left with five fracture process and five toughness values:

  1. GAT,c(I) - mode I crack growth in plane with normal in axial direction
  2. GAT,c(II) - mode II crack growth in plane with normal in axial direction
  3. GT,c(I) - mode I crack growth in plane with normal in transverse direction (an average of all direction is that plane)
  4. GTA,c(II) - mode II crack growth in plane with normal in transverse direction for crack propagating in axial direction
  5. GTT,c(II) - mode II crack growth in plane with normal in transverse direction for crack propagating in transverse direction

Damage Initiation and Propagation

Damage initiation is controlled by attaching a damage initiation law to the material. These laws define a failure envelop. Once the response reaches the envelop, the damage process is initiated and the normal to the crack plane is calculated depending on type of failure. The normal is needed to find the anisotropic D tensor (which involves rotating analysis into the crack axis system where the x axis is aligned with the crack normal. The only damage surface currently allowed for a transversely isotropic softening material is the TIFailure initiation law. Damage propagation and evolution is determined by softening laws laws to predict degradation of normal and shear tractions across the crack plane.

Full definition of a transversely isotropic requires specification of a strength and a softening law corresponding to each of the five modeled crack propagation modes described above:

  1. GAT,c(I) - strength is sigmacA, softening law is softeningAI (i.e., for axial failure in mode I)
  2. GAT,c(II) - strength is taucT, softening law is softeningTII
  3. GT,c(I) - strength is sigmac, softening law is softeningI (inhereted from Isotropic Softening Material)
  4. GTA,c(II) - strength is taucA, softening law is softeningAII
  5. GTT,c(II) - strength is tauc, softening law is softeningII (inhereted from Isotropic Softening Material)

You need to attach five strengths and five softening laws to this material. In brief, this material models crack initiation and propagation through damage mechanics. The softening law properties tie the damage mechanics to toughness properties for the material. The scheme can handle all modeled failure modes, interacting cracks (which become interacting damage zones), and 3D cracks.

The damage evolves during a simulation, but, if desired, predamage on any particle at the start of a simulation can be set using initial particle damage using particle boundary conditions.

Material Properties

When the material is undamaged, its response is identical to properties entered for the underlying transversely isotropic material. Once those are specified, you have to attach one damage initiation law and five softening laws, and all properties needed by those laws. These properties determine how the material responds after initiates and propagates damage.

Property Description Units Default
(Transversely Isotropic Properties) Enter all properties needed to define the underlying transversely isotropic material response varies varies
Initiation Attach damage initiation law by name or ID that is compatible with this material. Once attached, enter all required strength properties for that law. none TIFailure
SofteningAI Attach a softening law (by name or ID) for propagation of tensile damage by GAT,cI crack growth. Once attached, enter all required properties for that law by prefacing each property with "AI-". none Linear
SofteningTII Attach a softening law (by name or ID) for propagation of shear damage by GAT,cII crack growth. Once attached, enter all required properties for that law by prefacing each property with "TII-". none Linear
SofteningI Attach a softening law (by name or ID) for propagation of tensile damage by GT,cII crack growth. Once attached, enter all required properties for that law by prefacing each property with "I-". none Linear
SofteningAII Attach a softening law (by name or ID) for propagation of shear damage by GTA,cII crack growth. Once attached, enter all required properties for that law by prefacing each property with "AII-". none Linear
SofteningII Attach a softening law (by name or ID) for propagation of shear damage by GTT,cII crack growth. Once attached, enter all required properties for that law by prefacing each property with "II-". none Linear
tractionFailureSurface Select traction failure surface assumed that determines coupling between anisotropic damage mechanics parameters. The options are 0 = cuboid and 2 or 3 = coupled. For cuboid, the three damage parameters evolve independently. For coupled cuboid, the damage parameters are coupled such that all tractions simultaneously reach zero at failure. none 0
coefVariation
wShape
wV0
statDistributionMode
See the corresponding properties defined for an Isotropic softening material.
coeff coefficient of friction for post-decohesion contact (default is 0 or frictionless) none 0
(other) Properties common to all materials varies varies

Deprecated Material Properties

Prior to the swapz material property, there were two types on transversely isotropic softening materials named "TransIsoSoftening 1" and "TransIsoSoftening 2". Although these can still be used as the material type, they are deprecated. The prior "TransIsoSoftening 1" is identical to this material with swapz=0. The prior "TransIsoSoftening 2" material is identical to this material with swapz=1.

History Variables

This material stores several history variables that track the extent of the damage and orientation of the damage plane:

  1. A flag to indicate damage process:
    • 0.1: undamaged material point
    • 1.0±0.25: damage initiated and evolving
    • 2.0±0.25: material point has failed (decohesion)
    • Within the above ranges for initiated and failed particles, the specific value tells how the damage initiated and the orientation of the material's axial direction in the crack axis system:
      • 0.75/1.75/1.25/2.25: Tensile failure transverse to axial direction (sigmac failure)
        • 0.75/1.75: Material axial direction along z axis in the crack axis system
        • 1.25/2.25: Material axial direction along y axis in the crack axis system
      • 0.95/1.95: Tensile failure in the axial direction (sigmacA failure)
        • Material axial direction along x axis in the crack axis system
      • 0.80/1.15/1.80/2.15: Shear fail in axial plane with crack path in the axial direction (taucA failure)
        • 0.80/1.80: Material axial direction along z axis in the crack axis system
        • 1.15/2.15: Material axial direction along y axis in the crack axis system
      • 1.05/2.05: Shear fail in axial plane with crack path in the transverse direction (taucT failure)
        • Material axial direction along x axis in the crack axis system
      • 0.85/1.85: Shear failure in isotropic plane (tauc failure)
        • Material axial direction along z axis in the crack axis system
  2. δn or the maximum normal cracking strain.
  3. δxy or the maximum x-y shear cracking strain.
  4. δxz or the maximum x-z cracking strain (3D), but changes to mode I dissipated energy for 2D.
  5. dn or damage variable for normal loading (varies from 0 to 1 where 1 is complete damage or failure).
  6. dxy or damage variable for x-y shear loading (varies from 0 to 1 where 1 is complete damage or failure; for cuboid), but changes to mode I dissipated energy for 3D ovoid.
  7. dxz or damage variable for x-z shear loading (varies from 0 to 1 where 1 is complete damage or failure; for 3D cuboid only), but changes to mode II dissipated energy for all others.
  8. For 2D it is cos(θ), but for 3D it is Euler angle α.
  9. For 2D it is sin(θ), but for 3D it is Euler angle β.
  10. For 2D it is not used, but for 3D it is Euler angle γ.
  11. Ac/Vp where Ac is crack area within the particle and Vp is particle volume.
  12. Relative strength derived at the start by coefVariation and coefVariationMode properties.
  13. Relative toughness derived at the start by coefVariation and coefVariationMode properties.

Variables 8-10 define the normal to the damage crack plane. For 2D, θ is the counter clockwise angle from the x axis to the crack normal. For 3D, (α, β, γ) are the three Euler angles for the normal direction using a Z-Y-Z rotation scheme. You can use the damagenormal archiving option to save enough information for plotting the normal. Although damaged normal is a unit vector, it is archived with magnitude equal to Ac/Vp (which gets another history variable archived and the value is used for some visualization options).

This material also tracks the cracking strain which can be saved by using the plasticstrain archiving option. The strain is archived in the global axis system. If you also archive the damagenormal, you will be able to plot a vector along the crack-opening displacement vector.

Examples

This example can be a starting point for modeling of wood

 Material "wood","Douglas fir","TransIsoSoftening"&#type$
   EA 12000
   ET 900
   GA 800
   nuT .4
   nuA .33
   alphaA 0
   alphaT 40
   rho 0.5
   largeRotation 1
   Initiation "TIFailure"
   sigmac 10
   tauc 3
   sigmacA 100
   taucA 10
   taucT 30
   strengthCoefVariation 0.3
   AI-Gc 1200
   AII-Gc 600
   TII-Gc 800
   I-Gc 200
   II-Gc 400
 Done

References

  1. J. A. Nairn, C. C. Hammerquist, and Y. E. Aimene, "Numerical Implementation of Anisotropic Damage Mechanics," Int. J. for Numerical Methods in Engineering, 112(12), 1846-1868 (2017). PDF