Difference between revisions of "Tait Liquid Material"

From OSUPDOCS
Jump to navigation Jump to search
Line 9: Line 9:


     
     
<math>B(T) = { K(0,T)/over C }</math>
<math>B(T) = { K(0,T)\over C }</math>


where K(0,T) is the temperature dependence of the bulk modulus at zero pressure.
where K(0,T) is the temperature dependence of the bulk modulus at zero pressure. Defining ''J'' as relative volume (''i.e.'', determinant for deformation gradient) and ''J<sub>res</sub>'' as determinant of deformation gradient due to free thermal expansion, or:
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>J = {V(P,T)\over V(0,T_0)} \qquad {\rm and} \qquad J_{res} = {V(0,T)\over V(0,T_0)}</math>
 
where T<sub>0</sub> is the [[Thermal Calculations#Stress Free Temperature|stress free temperature]], the constitutive law for pressure is:
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>P = CK_0\left[\exp\left({1\over C}\left(1 - {J\over J_{res}}\right)\right)-1\right]</math>


== Material Properties ==
== Material Properties ==

Revision as of 16:53, 30 December 2013

Constitutive Law

This MPM material as a hyperelastic material. The pressure in the liquid is found from the Tait equation:

      [math]\displaystyle{ V(P,T) = V(0,T)\left[1 - C \ln\left(1+{P\over B(T)}\right)\right] }[/math]

where C = 0.0894 is a universal Tait constant, V(0,T) is the temperature dependence of the volume at zero pressure, and

      [math]\displaystyle{ B(T) = { K(0,T)\over C } }[/math]

where K(0,T) is the temperature dependence of the bulk modulus at zero pressure. Defining J as relative volume (i.e., determinant for deformation gradient) and Jres as determinant of deformation gradient due to free thermal expansion, or:

      [math]\displaystyle{ J = {V(P,T)\over V(0,T_0)} \qquad {\rm and} \qquad J_{res} = {V(0,T)\over V(0,T_0)} }[/math]

where T0 is the stress free temperature, the constitutive law for pressure is:

      [math]\displaystyle{ P = CK_0\left[\exp\left({1\over C}\left(1 - {J\over J_{res}}\right)\right)-1\right] }[/math]

Material Properties

Property Description Units Default

History Variables

None

Examples