Difference between revisions of "Isotropic, Elastic-Plastic Mie-Grüneisen Material"

From OSUPDOCS
Jump to navigation Jump to search
Line 19: Line 19:
     
     
<math>P = C_0^2\eta + \gamma_0 U</math>
<math>P = C_0^2\eta + \gamma_0 U</math>
This equation of state also causes a temperature change of
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>dT =  JT \gamma_0  {V(t+\Delta t)-V(t)\over V}  + {dq \over C_V}</math>
where ''dq'' is dissipated energy that is converted to heat.


== Material Properties ==
== Material Properties ==

Revision as of 11:56, 31 December 2013

Constitutive Law

This MPM material uses a Mie-Grüneisen equation of state in the in the elastic regime and can plastically deform according to any selected hardening law.

Mie-Grüneisen Equation of State

The Mie-Grüneisen equation of state defines the pressure only and the Kirchoff pressure is

      [math]\displaystyle{ {p\over \rho_0} = {C_0^2 \eta \left(1 - {1\over 2}\gamma_0 \eta\right) \over (1 - S_1\eta - S_2\eta^2 - S_3 \eta^3)^2} + \gamma_0 U }[/math]

where [math]\displaystyle{ \eta }[/math] is fraction compression and given by

      [math]\displaystyle{ \eta = 1 - {\rho_0\over \rho} = 1 - {V\over V_0} = 1 - J }[/math]

and [math]\displaystyle{ \gamma_0 }[/math], [math]\displaystyle{ C_0 }[/math], and [math]\displaystyle{ S_i }[/math] are material properties and [math]\displaystyle{ U }[/math] is total internal energy. The above equation applies only in compression ([math]\displaystyle{ \eta\gt 0 }[/math]). In tension, the pressure is given by

      [math]\displaystyle{ P = C_0^2\eta + \gamma_0 U }[/math]

This equation of state also causes a temperature change of

      [math]\displaystyle{ dT = JT \gamma_0 {V(t+\Delta t)-V(t)\over V} + {dq \over C_V} }[/math]

where dq is dissipated energy that is converted to heat.

Material Properties

Property Description Units Default
E Tensile modulus MPa none

History Variables

None

Examples