Difference between revisions of "Mooney Material"
Line 24: | Line 24: | ||
| | ||
<math>U(J) ={\kappa\over 2 }({1\over 2 }(J^2-1)-ln J)</math> | <math>U(J) ={\kappa\over 2 }({1\over 2 }(J^2-1)-\ln J)</math> | ||
| | ||
<math>U(J) ={\kappa\over 2 }(ln J)^2</math> | <math>U(J) ={\kappa\over 2 }(\ln J)^2</math> | ||
where <math>\kappa</math> is bulk modulus. At low strains, this material is equivalent to a linear elastic, isotropic material with shear modulus ''G'' = ''G''<sub>1</sub> + ''G''<sub>2</sub> and bulk modulus <math>\kappa</math>. If ''G''<sub>2</sub> = 0, the material is a Neo-Hookean material. See below for an alternate compressibility terms. Some hyperelastic rubber models assume incompressible materials, which corresponds to <math>\kappa\to\infty</math>; such models do not work in dynamic code (because the dilational wave speed is infinite). | where <math>\kappa</math> is bulk modulus. At low strains, this material is equivalent to a linear elastic, isotropic material with shear modulus ''G'' = ''G''<sub>1</sub> + ''G''<sub>2</sub> and bulk modulus <math>\kappa</math>. If ''G''<sub>2</sub> = 0, the material is a Neo-Hookean material. See below for an alternate compressibility terms. Some hyperelastic rubber models assume incompressible materials, which corresponds to <math>\kappa\to\infty</math>; such models do not work in dynamic code (because the dilational wave speed is infinite). |
Revision as of 10:53, 28 December 2013
Constitutive Law
The Mooney-Rivlin material Mooney-Rivlin is an isotropic, elastic material in large strains using the hyperelastic formulation.
Within the framework of hyperelasticity, the existence of a stored-energy W (per unit deformed or indeformed volume), function of a deformation gradient tensor (F, is postulated (Weichert et al., 2000; Truesdell and Noll 1965 and Ogden, 1984) and the constitutive law derived from a strain energy function that is a function of the deformation gradient tensor F, according to the inequality of Clausius-Duheim. Regarding to the objectivity conditions and using the representation theorem (Truesdell and Noll, 1965), the strain energy function is a function of the invariants of a strain tensor. With the left Cauchy-Green strain tensor, Cauchy stress is given by:
[math]\displaystyle{ \mathbf{\sigma} =2 {\delta W \over {\delta \mathbf{B}}} \mathbf{B} }[/math]
In a Mooney-Rivlin material, stored stain energy is give by the expression:
[math]\displaystyle{ W =U(J) + {G_{1} \over 2 } (\bar I_{1}-3) + {G_{2} \over 2 }(\bar I_{2}-3) }[/math]
where J (= det F) is relative volume change, G1 and G2 are shear material properties, and [math]\displaystyle{ \bar I_{1} }[/math] and [math]\displaystyle{ \bar I_{2} }[/math] are the strain invarients:
[math]\displaystyle{ \bar I_{1} ={B_{xx}+B_{yy}+B_{zz} \over J^{2/3}} \qquad {\rm and} \qquad \bar I_{2} ={1 \over 2} (\bar I_{1}^2-{{B_{xx}^2+B_{yy}^2+B_{zz}^2+2B_{xy}^2+2B_{xz}^2+2B_{yz}^2} \over J^{2/3}}) }[/math]
This material allows three options for the volumetric energy term:
[math]\displaystyle{ U(J) ={\kappa\over 2 }(J-1)^2 }[/math]
[math]\displaystyle{ U(J) ={\kappa\over 2 }({1\over 2 }(J^2-1)-\ln J) }[/math]
[math]\displaystyle{ U(J) ={\kappa\over 2 }(\ln J)^2 }[/math]
where [math]\displaystyle{ \kappa }[/math] is bulk modulus. At low strains, this material is equivalent to a linear elastic, isotropic material with shear modulus G = G1 + G2 and bulk modulus [math]\displaystyle{ \kappa }[/math]. If G2 = 0, the material is a Neo-Hookean material. See below for an alternate compressibility terms. Some hyperelastic rubber models assume incompressible materials, which corresponds to [math]\displaystyle{ \kappa\to\infty }[/math]; such models do not work in dynamic code (because the dilational wave speed is infinite).  The Cauchy (or true stress) stress tensor is determined by differentiating the strain energy function. It is represented here by the addition of the spheric (pressure) and the deviatoric stress tensors, [math]\displaystyle{ \mathbf{\sigma} = p \mathbf{I} + \bar \mathbf{\sigma} }[/math] given by:
[math]\displaystyle{ \mathbf{\sigma} =\kappa(J-1)\mathbf{I} + {G_{1} \over J^{5/3} } (\mathbf{B}-{I_{1} \over3}\mathbf{I}) + {G_{2} \over J^{7/3}} (I_{1} \mathbf{B}-\mathbf{B^2}-{2I_{2} \over3}\mathbf{I}) }[/math]
where [math]\displaystyle{ I_{1} = J^{2/3} \bar I_{1} \qquad {\rm and} \qquad I_{2} = J^{4/3} \bar I_{2} }[/math] .
Material Properties
The constants involved in the strain energy function, are equivalent in small strains to properties of isotropic elastic material with Poisson's ratio [math]\displaystyle{ {\nu} }[/math] as well as shear modulus G = G1 + G2 and bulk modulus [math]\displaystyle{ {\kappa} }[/math] given by
[math]\displaystyle{ G = {E \over 2({1+\nu })} \qquad {\rm and} \qquad \kappa = {E \over 3({1-2\nu })} }[/math].
Property | Description | Units | Default |
---|---|---|---|
E | Elastic modulus | MPa | none |
G1, G2 | Shear modulus | MPa | none |
alpha | Thermal expansion coefficient | ppm/M | 40 |
History Variables
None
Examples
These commands model polymer as an isotropic, hyperelastic material with G1=G2 =G/2 (using scripted or XML commands):
Material "polymer","polymer","Mooney" E 2500 nu .4 alpha 60 rho 1.2 Done
<Material Type="8" Name="polymer"> <rho>1.2</rho> <G1>35.714285714</G1> <G2>35.714285714</G2> <K>166.66666666</K> <alpha>60</alpha> </Material>
References
• Ogden R. W., (1984), Non-linear elastic deformations. Wiley et Sons, New York.
• Truesdell C. and W. Noll W (1965), The nonlienar field theories of mechanics, Edition Handbuch der Physik, Vol. III. Spinger, Berlin.
• Weichert D. et Y. Basar, (2000), Nonlinear continuum mechanics of solids, Springer, New York.