Difference between revisions of "Isotropic Phase Field Softening Material"

From OSUPDOCS
Jump to navigation Jump to search
Line 3: Line 3:
== Constitutive Law ==
== Constitutive Law ==


This material implements phase field fracture model using the viscous regularization method described in Miehe <ref name="Miehe"/>
This material implements phase field fracture model using the viscous regularization method described in Miehe <ref name="Miehe"/> and extends it in a few areas.
 
(more description to follow)


== Material Properties ==
== Material Properties ==
Line 29: Line 31:
| ([[Common Material Properties|other]]) || Properties common to all materials || varies || varies
| ([[Common Material Properties|other]]) || Properties common to all materials || varies || varies
|}
|}
The results in Miehe <ref name="Miehe"/> correspond to gd = 1, garg = 1, and partition = 0. These choices give poor results in some problems. This material has extension that can explore different phase field options.


== History Variables ==
== History Variables ==

Revision as of 15:23, 15 November 2023

Constitutive Law

This material implements phase field fracture model using the viscous regularization method described in Miehe [1] and extends it in a few areas.

(more description to follow)

Material Properties

The isotropic variational mechanics model using a single energy release rate that scales evolution of damage. The critical energy release rate is enter using the base material JIc property. The other needed material properties are as follows:

Property Description Units Default
(Isotropic Properties) Enter all properties needed to define the underlying isotropic material response varies varies
ell Length scale parameter used in variational fracture mechanics length units none
viscosity Viscosity to use when solving coupled phase field evolution in a diffusion tasks viscosity units none
gd Softening law with options 0 = quadratic, 1 = exponential, 2 = linear softening none 0
garg An optional argument for use within the softening law. If not provided, default values depend on gd and are 1, 3, and 4, for gd = 0, 1, or 2, respectively none varies
stability A stability factor thought to stabilize post-failure analysis none 0
partition Chose the method used to partition energy into energy that causes fracture and energy that does not cause fracture. The options are 0 = using eigenstrain analysis and 1 = divide into pressure and deviatoric strains none 1
(other) Properties common to all materials varies varies

The results in Miehe [1] correspond to gd = 1, garg = 1, and partition = 0. These choices give poor results in some problems. This material has extension that can explore different phase field options.

History Variables

This material stores several history variables that track the extent of the damage and evolution of the phase field:

  1. Maximum energy history term that provides source terms for phase field evolution
  2. Damage state equation to 0 if not failed and 1 if failure (i.e., phase value has reached 1)
  3. Current phase field value
  4. Change in phase field since the last time step. It is used in constitutive law modeled and is scaled by 0.5 when using USAVG method.

References

  1. 1.0 1.1 C. Miehe, M. Hofacker, and F. Welschinger, "A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits," Computer Methods in Applied Mechanics and Engineering, 199, 2765–2778 (2010).