Orthotropic Plastic Softening Material

From OSUPDOCS
Revision as of 10:20, 18 October 2020 by Nairnj (talk | contribs)
Jump to navigation Jump to search

Constitutive Law

This MPM Material is an orthotropic, elastic-plastic material that can also develop anisotropic damage. The material is available only in OSParticulas.

In the absence of damage, this material is identical to a Anisotropic, Elastic-Plastic Material. In the absence of plasticity, this material is identical to an Orthotropic Softening Material. If conditions allow, the material can develop both plasticity and damage with softening. Note that if plastic yield properties are below damage initiation stress, the material may have never reach stress to cause damage. But, if the plastic properties allow hardening, the material can yield first and then start damage after hardening allows stresses to reach stress for initiation of damage.

Material Properties

For material properties, combine all options available for an Isotropic, Elastic-Plastic Material and for an Isotropic Softening Material. This material must, however, use large rotation mode (as is also required for an Isotropic Softening Material).

Property Description Units Default
(Isotropic Properties) Enter all properties needed to define the underlying isotropic material response varies varies
(Isotropic, Plastic Properties) Enter yield properties and a hardening law, but cannot use a hardening law that changes shear modulus (Steinberg-Cochran-Guinan Hardening or Steinberg-Lund Hardening) varies varies
(Isotropic Softening Properties) Enter properties for initiation of damage and for two softening laws varies varies
(other) Properties common to all materials and must use the large rotation option varies varies

History Variables

The chosen hardening law will have at least one history variable and will start with history variable number 1. After the hardening law history variables, the remaining variables will be for the Isotropic Softening Material material. The softening history variable will be offset by the number of hardening law history variables. Because plastic strain tracks sum of plastic and cracking strain, three additional history variables (compared to Isotropic Softening Material) track the three components of cracking strains in the crack axis system corresponding to normal and shear crack opening displacements.

Let P and S be number of history variables for the plastic law in use and for damage needed by an Isotropic Softening Material, respectively. The history variables for this material are then:

  • 1 to P: Plastic law history variables
  • P+1 to P+S: Isotropic Softening Material history variables
  • P+S+1: εc,xx or x direction cracking strain normal to crack in the crack axis system
  • P+S+2: γc,xy or x-y direction shear cracking strain in the crack axis system
  • P+S+3: γc,xz or x-z direction shear cracking strain in the crack axis system

This material also tracks sum of plastic strain and cracking strain which can be saved by using the plasticstrain archiving option. The total plastic plus cracking strain is archived in the global axis system.

If you also archive the damagenormal, you will be able to plot a vector along the crack-opening displacement vector.