Anisotropic, Elastic-Plastic Material

From OSUPDOCS
Jump to navigation Jump to search

Constitutive Law

This MPM material is identical to an orthotropic material in the elastic regime, but can plastically deform according to a built-in, anistropic Hill yielding criterion. The Hill plastic yield criterion is:

      [math]\displaystyle{ \sqrt{F(\sigma_{yy}-\sigma_{zz})^2 + G(\sigma_{xx}-\sigma_{zz})^2 + H(\sigma_{yy}-\sigma_{xx})^2 + 2L\tau_{yz}^2 + 2M\tau_{xz}^2 + 2N\tau_{xy}^2} = H(\alpha) }[/math]

where σ and τ are normal and shear stresses in the material axis system after rotation from the analysis coordinates, [math]\displaystyle{ H(\alpha) }[/math] is a hardening law, and [math]\displaystyle{ \alpha }[/math] is a plastic hardening variable. The remaining constants are determined by the yield stresses:

      [math]\displaystyle{ F = {1\over 2}\left({1\over \sigma_{Y,yy}^2} + {1\over \sigma_{Y,zz}^2} - {1\over \sigma_{Y,xx}^2}\right) \qquad\qquad L = {1\over 2\tau_{Y,yz}^2} }[/math]

      [math]\displaystyle{ G= {1\over 2}\left({1\over \sigma_{Y,xx}^2} + {1\over \sigma_{Y,zz}^2} - {1\over \sigma_{Y,yy}^2}\right) \qquad\qquad M = {1\over 2\tau_{Y,xz}^2} }[/math]

      [math]\displaystyle{ H = {1\over 2}\left({1\over \sigma_{Y,xx}^2} + {1\over \sigma_{Y,yy}^2} - {1\over \sigma_{Y,zz}^2}\right) \qquad\qquad N = {1\over 2\tau_{Y,xy}^2} }[/math]

where σY and τY are yield stresses for loading in the indicated direction. The yield stresses have to be selected such that the plastic potential is positive semidefinite. Analysis shows that all tensile yield stresses must satisfy:

      [math]\displaystyle{ \left|{1\over \sigma_{Y,ii}^2} - {1\over \sigma_{Y,jj}^2} \right| \le {1\over \sigma_{Y,kk}^2} \le {1\over \sigma_{Y,ii}^2} + {1\over \sigma_{Y,jj}^2} }[/math]

where i, j, and k are any combination or x, y, and z. In more practical terms, if two yield stresses are related by some ratio:

      [math]\displaystyle{ R = {\sigma_{Y,ii}^2\over \sigma_{Y,jj}^2} \quad\rm{or} \quad {1\over \sigma_{Y,jj}^2} = {R\over \sigma_{Y,ii}^2} }[/math]

and [math]\displaystyle{ R\le1 }[/math] (i.e., [math]\displaystyle{ \sigma_{Y,ii}\le\sigma_{Y,jj} }[/math]) then the third yield stress is bracketed by:

      [math]\displaystyle{ {\sigma_{Y,ii}\over 1+R} \le \sigma_{Y,kk} \le {\sigma_{Y,ii}\over 1-R} }[/math]

One extreme example is:

      [math]\displaystyle{ {\rm if\ }R = 0, \ \sigma_{Y,kk} = \sigma_{Y,ii},\ \sigma_{Y,jj} = \infty }[/math]

In other words, if one direction is prevented from yielding by setting its yield strength to ∞ the other two direction must have the same yield stress. Also note that if two directions are equal, the third direction must be:

      [math]\displaystyle{ {\rm if\ }R = 1, \ \sigma_{Y,kk} \ge {\sigma_{Y,ii}\over 2} }[/math]

Hardening Laws

There hardening laws are available:

      [math]\displaystyle{ H(\alpha) = 1 + K \alpha^n }[/math]

      [math]\displaystyle{ H(\alpha) = (1 + K \alpha)^n }[/math]

      [math]\displaystyle{ H(\alpha) = 1 + \frac{K}{k}(1-\exp(-k\alpha)) }[/math]

Note, that because [math]\displaystyle{ H'(\alpha) }[/math] in the first law is infinite for [math]\displaystyle{ \alpha=0\lt /alpha\gt when ''n'' is less than one. This steep slope causes this law to become unstable for ''n'' less then about 0.7. == Material Properties == {| class="wikitable" |- ! Property !! Description !! Units !! Default |- | yldxx || Yield stress for axial loading in the x direction || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || ∞ |- | yldyy || Yield stress for axial loading in the y direction || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || ∞ |- | yldzz || Yield stress for axial loading in the z direction || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || ∞ |- | yldxy || Yield stress for shear loading in the x-y plane || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || ∞ |- | yldxz || Yield stress for shear loading in the x-z plane || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || ∞ |- | yldyz || Yield stress for shear loading in the y-z plane || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || ∞ |- | Khard || Hardening law K parameter || dimensionless || 0 |- | nhard || Hardening law n parameter || dimensionless || 1 |- | [[Common Material Properties#Basic Properties|largeRotation]] || If used, this setting is ignored and material always uses 1 || dimensionless || 1 (fixed) |- | [[Orthotropic Material#Material Properties|(other)]] || All other properties are identical to the properties for an [[Orthotropic Material|othotropic material]]. || varies || varies |} Although default tensile yield stresses are all infinite, one of them must be finite to use this material. Similarly, the combination of properties must satisfy conditions for positive definiteness described above. If not, an error message will appear and simulation will not run. == History Variables == The one history variable is the value of plastic hardening variable \lt math\gt \alpha }[/math]. This variable can be archived as history variable 1.

Examples