Isotropic, Elastic-Plastic Mie-Grüneisen Material
Constitutive Law
This MPM material uses a Mie-Grüneisen equation of state in the in the elastic regime and can plastically deform according to any selected hardening law.
Mie-Grüneisen Equation of State
The Mie-Grüneisen equation of state defines the pressure only and the Kirchoff pressure is
[math]\displaystyle{ {p\over \rho_0} = {C_0^2 \eta \left(1 - {1\over 2}\gamma_0 \eta\right) \over (1 - S_1\eta - S_2\eta^2 - S_3 \eta^3)^2} + \gamma_0 U }[/math]
where [math]\displaystyle{ \eta }[/math] is fraction compression and given by
[math]\displaystyle{ \eta = 1 - {\rho_0\over \rho} = 1 - {V\over V_0} = 1 - J }[/math]
and [math]\displaystyle{ \gamma_0 }[/math], [math]\displaystyle{ C_0 }[/math], and [math]\displaystyle{ S_i }[/math] are material properties and [math]\displaystyle{ U }[/math] is total internal energy. The [math]\displaystyle{ C_0 }[/math] property if the bulk wave speed under low-pressure conditions. It is related to the low pressure bulk modulus by:
[math]\displaystyle{ K_0 = \rho_0 C_0^2 }[/math]
The above pressure equation is used only in compression ([math]\displaystyle{ \eta\gt 0 }[/math]). In tension, the pressure is given by
[math]\displaystyle{ P = C_0^2\eta + \gamma_0 U }[/math]
This equation of state also causes a temperature change of
[math]\displaystyle{ dT = -JT \gamma_0 {V(t+\Delta t)-V(t)\over V} + {dq \over C_V} }[/math]
where dq is dissipated energy that is converted to heat. By including temperature rises and internal energy, this material automatically thermally expands with the appropriate thermal expansion coefficient without need to enter a thermal expansion coefficient. The linear thermal expansion coefficient the results is
[math]\displaystyle{ \alpha = {\rho_0\gamma_0\C_v\over 3K_0} }[/math]
Material Properties
Property | Description | Units | Default |
---|---|---|---|
E | Tensile modulus | MPa | none |
History Variables
None