Ideal Gas Material

From OSUPDOCS
Jump to navigation Jump to search

Constitutive Laws

This MPM material models either an ideal gas or a non-ideal van der Waals gas. Note the MPM is not in ideal method for odeling gas dynamics. The main use of this material type is when combine gas material points interact with other material types. TO optimize such modeling, the gas pressure can be is tracked by one of two methods:

  1. Actual Pressure: Set reference pressure to [math]\displaystyle{ P_0 }[/math] and track total pressure, [math]\displaystyle{ P }[/math], on the each particle from gas laws.
  2. Gauge Pressure: Omitting reference pressure material property, P0, tells the calculation track a gauge pressure, [math]\displaystyle{ p = P - P_0 }[/math] where [math]\displaystyle{ P_0 }[/math] is the gauge pressure set to 1 atmosphere (= 0.101325 MPa), on each particle. In other words 1 atmosphere pressure is a new baseline that correspond to zero gauge pressure on the particle.

The "Actual Pressure" works best when modeling just an ideal gas. The "Gauge Pressure" method appears to work better when gas particles are interacting with other materials (all of which have zero stress under starting conditions).

Ideal Gas Law

The ideal gas law is:

      [math]\displaystyle{ PV = nRT }[/math]

where P is pressure, V is volume, n is number of moles, R is the gas constant, and T is absolute temperture. By making use of a Reference State, this equation is recast in a more convenient form for modeling as a hyperelastic material in MPM code. The resulting constitutive laws for pressure and gauge pressure are:

      [math]\displaystyle{ P = P_0 {T\over T_0} {1\over J} \quad{\rm and}\quad p = P_0 \left({T\over T_0} {1\over J}-1\right) }[/math]

where J is determinant of the deformation tensor (J = V/V0) and T is temperature. P0, T0, and V0 (the initial particle value) define a gas Reference State]. Note that P0 is always 1 atmosphere when using gauge pressure.

The pressure is stored in the normal stresses or σxxyy = σzz = -P (or -p). All shear stresses are zero. This material is equivalent to a hyperelastic material with strain energy function of

      [math]\displaystyle{ P = -\frac{dW(J)}{dJ} \quad {\rm or}\quad W(J) = -P_0{T\over T_0} \ln J }[/math]

where [math]\displaystyle{ C }[/math] is any constant. This energy function is equivalent to the energy per unit initial volume for isothermal compression or expansion of an ideal gas.

Non-Ideal van der Waals Gas

The van der Waals gas law is

     [math]\displaystyle{ \left(P + {an^2\over V^2}\right)\left({V\over n}-b\right) = RT }[/math]

where a and b are van der Waals gas properties. Using reference state calculations to eliminate n, actual and gauge pressure constitutive laws can be written as:

     [math]\displaystyle{ P = P_0'{T\over T_0}\left({1\over J-b'}\right) - {a'\over J^2} \quad{\rm and}\quad p = P_0'{T\over T_0}\left({1\over J-b'}\right) -\left(P_0 + {a'\over J^2}\right) }[/math]

where

     [math]\displaystyle{ a' = \frac{a\rho_0^2}{M_g},\ b'=\frac{b\rho_0}{M_g},\ {\rm and}\ P_0'=(P_0+a')(1-b') }[/math]

Note that these laws revert to ideal gas law when [math]\displaystyle{ a'=b'=0 }[/math]. The constant [math]\displaystyle{ b' }[/math] can also be written as [math]\displaystyle{ b'=bn/V_0 }[/math] that corresponds to fraction of the references volume that is excluded by gas molecules (an ideal gas ignores volume of gas molecules).

Reference State

Gas material properties are set by defining a reference state with pressure, [math]\displaystyle{ P_0 }[/math], temperature, [math]\displaystyle{ T_0 }[/math], and initial particle volume, [math]\displaystyle{ V_0 }[/math]. When using gauge pressure method, [math]\displaystyle{ P_0 }[/math] is set to 1 atmosphere. The reference state is used eliminate number of moles in the gas law. For an ideal gas the analysis is easy:

     [math]\displaystyle{ n = \frac{P_0V_0}{RT} }[/math]

Substitution into ideal gas law gives the constitutive laws used in code. The calculation is the same for a van der Waals gas but is more complicated (it needs to solve a cubic equation). The details are provided in the materials.pdf file in the technical notes.

MPM coding also needs the initial density. For an ideal gas, initial density can be found from

     [math]\displaystyle{ \rho_0 = \frac{nM_g}{V_0} = {P_0 M_g\over R T_0} }[/math]

where [math]\displaystyle{ M_g }[/math] is molecular weight of the gas molecule. The second form uses reference state to eliminate [math]\displaystyle{ V_0/n }[/math]. For example, air might have reference pressure of 1 atm = 0.101325 MPa, [math]\displaystyle{ M_g=28.97 }[/math] g/mol at room temperature T0=300K with R = 8.3144621 J/k/mol leading to [math]\displaystyle{ \rho_0=0.1176 }[/math] g/cm2. The initial density for a van der Waals gas is slightly different (and found by revised [math]\displaystyle{ V_0/n }[/math] in reference conditions). The difference in calculated density compared to an ideal gas calculated density is usually small.

Material Properties

The ideal gas properties are set with

Property Description Units Default
P0 Reference pressure at reference temperature and reference density. When entered, this property must be a positive value greater than zero and the calculation track actual pressure. If this property is omitted, the reference pressure is set to 1 atmosphere and the code tracks gauge pressure. pressure units Omitted
T0 Reference temperature K none
rho Density at reference conditions. density units none
vdwa Enter the van der Waals a property (setting this property sets code to use van der Waals gas law). The units are (length units)6(pressure units)/mole2 (see descriptio) none
vdwb Enter the van der Waals b property (setting this property sets code to use van der Waals gas law). The units are (length units)3/mole (see description) none
Cv Instead of heat capacity, this parameter determines if the gas is monatomic or diatomic. Enter 1 (or any number smaller than 1) for monatomic or 2 (or any number larger than 2) for diatomic. The resulting heat capacity is CV = (3/2)R for a monotonic gas and CV = (5/2)R for a diatomic gas. none 1
(other) Properties common to all materials varies varies

When using gas particles, the stress free temperature must always be set to a desired temperature in Kelvin.

Heat Capacity and Thermal Expansion Coefficient

The material definitions for gasses, do not enter heat capactiy or thermal expansion coefficent. Instead these properties are calculated from gas thermodynamics.

History Variables

None

Examples

Note that you must always set the stress free temperature when use ideal gas law for sample particles.

Material "air","Air","IdealGas"
  P0 0.101325
  T0 300
  rho 0.001176
  Cv 2
Done
StressFreeTemp 300