Exponential Softening

From OSUPDOCS
Jump to navigation Jump to search

The Softening Law

An exponential softening law has the following values:

      [math]\displaystyle{ f(\delta,s) = e^{-\delta/(sG_c)} }[/math]

      [math]\displaystyle{ A(\delta,s) = cG_c - e^{-\delta/(sG_c)}\left(sG_c+{\delta\over2}\right) }[/math]

[math]\displaystyle{ \max\bigl(f'(\delta,s)\bigr) \lt {1\over sG_c} }[/math]

where s is the softening scaling term and Gc is toughness of the law (and the law's only property). This law never fails, although the traction asymptotically approaches zero. The exponential decay rate, k, is

      [math]\displaystyle{ k = sG_c \qquad {\rm or} \qquad f(\delta) = e^{-k\delta} }[/math]

Softening Law Properties

Only one property is needed to define an exponential softening law:

Property Description Units Default
Gc The toughness associated with the this softening law energy release units none

Note that softening materials