Steinberg-Cochran-Guinan Hardening
In the Steinberg-Cochran-Guinan hardening law, the yield stress is given by
[math]\displaystyle{ \sigma_y = \sigma_0\bigl(1 + \beta \varepsilon_p^n){G(T,P)\over G_0} }[/math]
where σ0 is the initial yield stress, β and n are hardening law properties, [math]\displaystyle{ \varepsilon_p }[/math] is the cumulative plastic strain, G(T,P) is the shear modulus (which may depend on temperature and pressure), and G0 is the initial shear modulus. The shear modulus temperature and pressure dependence is given by:
[math]\displaystyle{ {G(T,P)\over G_0} = 1 + {G_P'\over G_0} P J^{1/3} + {G_T'\over G_0}(T-T_0) }[/math]
where J is the relative volume change (V/V0), GP' and GT' are coefficients for pressure and temperature affects, T is current temperature, and T0 is a reference temperature.
Hardening Law Properties
This hardening law can set the following properties: