Johnson-Cook Hardening

From OSUPDOCS
Revision as of 14:25, 14 August 2019 by Nairnj (talk | contribs)
Jump to navigation Jump to search

In the Johnson-Cook hardening law, the yield stress is given by

      [math]\displaystyle{ \sigma_y = \left(A + B\alpha^n\right)\left(1 + C \ln {\dot\alpha\over \dot\varepsilon_p^0} +D \ln \left({\rm max}\left({\dot\alpha\over \dot\varepsilon_p^0},1\right)\right)^{n_2}\right)\left(1-T_r^m\right) }[/math]

where α is cumulative equivalent plastic strain, [math]\displaystyle{ \dot\alpha }[/math] is plastic strain rate, and the reduced temperature (Tr) is given by:

      [math]\displaystyle{ T_r = {T-T_0\over T_m-T_0} }[/math]

where T0 is the reference temperature, which is equal to the current stress free temperature. For more details see paper by Johnson and Cook.[1]

Hardening Law Properties

The material parameters in this hardening law are defined by A, B, C, D, n, n2, m, [math]\displaystyle{ \dot\varepsilon_p^0 }[/math], and Tm. These parameters are set with the following properties:

Property Description
Ajc Parameter A and equal to the initial yield stress at the reference strain rate and the reference temperature. Enter in pressure units.
Bjc The hardening term B. Enter in pressure units.
njc Exponent on cumulative equivalent plastic strain in hardening term (n). It is dimensionless.
Cjc Coefficient for rate-dependent term (C). It is dimensionless
Djc Coefficient for second rate-dependent term (D). It is dimensionless
n2jc Exponent on second rate-dependent term with D (n2). It is dimensionless
ep0jc Reference strain rate ([math]\displaystyle{ \dot\varepsilon_p^0 }[/math]) for reference yield stress in A. It has units 1/time units.
Tmjc The material's melting point (Tm). Above this temperature the yield strength will be zero. It has units degree K.
mjc Exponent on reduced temperature that defines the temperature dependence of the yield stress.

The reference temperature, T0, is set using the simulation's stress free temperature and not set by using hardening law properties.

History Data

This hardening law defines one history variable, which is stored as history variable #1. It stores the the cumulative equivalent plastic strain (absolute) defined as

      [math]\displaystyle{ \alpha = \sum \sqrt{2\over3}\ ||d\varepsilon_p|| }[/math]

where dεp is the incremental plastic strain tensor in one time step.

References

  1. G. R. Johnson and W. H. Cook, "A constitutive model and data for metals subjected to large strains, high strain rates ad high temperatures," Proceedings of the 7th International Symposium on Ballistics, 541-547 (1983).