Difference between revisions of "Cubic Step Function Softening"

From OSUPDOCS
Jump to navigation Jump to search
Line 23: Line 23:
== Softening Law Properties ==
== Softening Law Properties ==


Only one property is needed to define a linear softening law:
Only one property is needed to define a cubic step function softening law:


{| class="wikitable"
{| class="wikitable"

Revision as of 12:07, 4 September 2017

The Softening Law

A cubic step softening law has the following values:

      [math]\displaystyle{ f(\delta,s) = 1 + 2\left( {\delta\over \delta_{max} }\right)^3 - 3\left( {\delta\over \delta_{max} }\right)^2 }[/math]     with     [math]\displaystyle{ \delta_{max} = 2sG_c }[/math]

where s is the softening scaling term and Gc is toughness of the law (and the law's only property). The critical cracking strain, which depends on mesh size and crack orientation, is calculated above and is not a law property to be provided.

The area (or energy dissipation term) is

      [math]\displaystyle{ A(\delta,s) = {\delta\over 2}\left(1. +\left( {\delta\over \delta_{max} }\right)^2\left((1. - \left( {\delta\over \delta_{max} }\right)\right)\right) }[/math]

The stability condition is:

      [math]\displaystyle{ \max\bigl(-f'(\delta,s)\bigr) = {1.5\over \delta_{max}} = {3\over 4sG_c} }[/math]

Softening Law Properties

Only one property is needed to define a cubic step function softening law:

Property Description Units Default
Gc The toughness associated with the this softening law energy release units none