Difference between revisions of "Exponential Traction Law"

From OSUPDOCS
Jump to navigation Jump to search
Line 17: Line 17:
\quad{\rm where}\quad f(\alpha) = 2\left(\frac{1}{\alpha}-\frac{e^{-\alpha}}{1-e^{-\alpha}}\right)</math>
\quad{\rm where}\quad f(\alpha) = 2\left(\frac{1}{\alpha}-\frac{e^{-\alpha}}{1-e^{-\alpha}}\right)</math>


The function f(&alpha;) is 1 when &alpha;=0 and decays to zero as &alpha; increase. The toughness is thus bracketed by
The function f(&alpha;) is 1 when &alpha;=0 and decays to zero as &alpha; increases. The toughness is thus bracketed by


&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>{1\over 2} \sigma_c\delta_e \le J_c \le {1\over 2} \sigma_c\delta_e</math>
<math>{1\over 2} \sigma_c\delta_e \le J_c \le {1\over 2} \sigma_c\delta_c</math>


The minimum corresponds large &alpha; with an instant drop to zero traction at &delta;<sub>e</sub> while the maximum corresponds to &alpha;=0 and is area under the corresponding [[Triangular Traction Law]].
The minimum corresponds large &alpha; with an instant drop to zero traction at &delta;<sub>e</sub> while the maximum corresponds to &alpha;=0 and is area under the corresponding [[Triangular Traction Law]].


When creating this traction law, you have to enter &alpha;, <i>exactly</i> two of &sigma;<sub>c</sub>, &delta;<sub>p</sub>, and k and <i>either</i> J<sub>c</sub> or &delta;<sub>c</sub>. These four required properties must be entered for both mode I and mode II. If you enter &delta;<sub>c</sub>, then the missing one of are calculated from


When creating this traction law, you have to enter <i>exactly</i> two of these three properties for both mode I and mode II ''(i.e.'', two of J<sub>Ic</sub>, &sigma;<sub>I</sub>, and &delta;<sub>Ic</sub> and two of J<sub>IIc</sub>, &sigma;<sub>II</sub>, and &delta;<sub>IIc</sub>). Whichever property is not specified will be calculated from the two provided properties using one of the following relations:


&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;

Revision as of 16:18, 21 December 2020

The Traction Law

Exptraction.jpg

This traction law assumes a linear elastic response up to σc followed by a scaled exponential decrease to reach zero at critical crack opening displacement (COD) of δc. The exponential decay in the post peak region (i.e., δ>δe) is given by

      [math]\displaystyle{ S(\delta) = \sigma_c\frac{e^{-\alpha\frac{\delta-\delta_e}{\delta_c-\delta_e}}-e^{-\alpha}}{1-e^{-\alpha}} }[/math]

This cohesive law defines traction as a function of crack opening displacement (COD) during uniaxial, monotonic loading. There are separate and uncoupled cohesive laws for opening displacement (mode I) and sliding displacement (mode II).

Notice how the shape changes with α. In the limit of α=0, this law is identical to the Triangular Traction Law (and that one should be used instead because it is more efficient. Increasing α causes traction to drop faster, which might simulate increasingly brittle response. The toughness of this cohesive law is the area under the curve that can be cast as

      [math]\displaystyle{ J_c = {1\over 2} \sigma_c\delta_c\left(\delta_{peak} + \bigl(1-\delta_{peak}\bigr)f(\alpha)\right) \quad{\rm where}\quad f(\alpha) = 2\left(\frac{1}{\alpha}-\frac{e^{-\alpha}}{1-e^{-\alpha}}\right) }[/math]

The function f(α) is 1 when α=0 and decays to zero as α increases. The toughness is thus bracketed by

      [math]\displaystyle{ {1\over 2} \sigma_c\delta_e \le J_c \le {1\over 2} \sigma_c\delta_c }[/math]

The minimum corresponds large α with an instant drop to zero traction at δe while the maximum corresponds to α=0 and is area under the corresponding Triangular Traction Law.

When creating this traction law, you have to enter α, exactly two of σc, δp, and k and either Jc or δc. These four required properties must be entered for both mode I and mode II. If you enter δc, then the missing one of are calculated from


      [math]\displaystyle{ \delta_c = {2J_c\over \sigma_c}, \qquad \sigma_c = {2J_c\over \delta_c}, \qquad {\rm or} \qquad J_c = {1\over 2}\sigma_c\delta_c }[/math]

The initial linear-elastic rise can be defined by slope k or by the relative crack opening displacement at the peak stress, δpeak (which is entered relative to the critical opening displacement or the elastic COD to reach the peak is δe = δpeakδc). You can only enter one of these two properties (i.e., one of kIe and δI,peak and one of kIIe and δII,peak). The other will be calculated from: This traction law assumes the triangular shape for traction as a function of crack opending displacement (COD) during uniaxial, monotonic loading. There are separate and uncoupled traction laws for opening displacement (mode I) and sliding displacement (mode II).

The toughness of this traction law is the area under the curve or:

      [math]\displaystyle{ J_c = {1\over 2} \sigma\delta_c }[/math]

When creating this traction law, you have to enter exactly two of these three properties for both mode I and mode II (i.e., two of JIc, σI, and δIc and two of JIIc, σII, and δIIc). Whichever property is not specified will be calculated from the two provided properties using one of the following relations:

      [math]\displaystyle{ \delta_c = {2J_c\over \sigma}, \qquad \sigma = {2J_c\over \delta_c}, \qquad {\rm or} \qquad J_c = {1\over 2}\sigma\delta_c }[/math]