Difference between revisions of "Mooney Material"

From OSUPDOCS
Jump to navigation Jump to search
Line 21: Line 21:


     
     
<math>U(J) ={\kappa\over 2 }({1\over 2 }(J^2-1)-\ln J) \\qquad{\rm <tt>UJOption</tt>=0</math>
<math>U(J) ={\kappa\over 2 }({1\over 2 }(J^2-1)-\ln J) \qquad({\rm UJOption}=0)</math>


&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math> U(J) ={\kappa\over 2 }(J-1)^2</math>
<math> U(J) ={\kappa\over 2 }(J-1)^2 \qquad\qquad({\rm UJOption}=1)</math>


&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>U(J) ={\kappa\over 2 }(\ln J)^2</math>
<math>U(J) ={\kappa\over 2 }(\ln J)^2 \qquad\qquad({\rm UJOption}=2)</math>


where <math>\kappa</math> is bulk modulus. At low strains, this material is equivalent to a linear elastic, isotropic material with shear modulus ''G'' = ''G''<sub>1</sub> + ''G''<sub>2</sub> and bulk modulus <math>\kappa</math>. If  ''G''<sub>2</sub> = 0, the material is a Neo-Hookean material. See below for an alternate compressibility terms. Some hyperelastic rubber models assume incompressible materials, which corresponds to <math>\kappa\to\infty</math>; such models do not work in dynamic code (because the dilational wave speed is infinite).
where <math>\kappa</math> is bulk modulus. At low strains, this material is equivalent to a linear elastic, isotropic material with shear modulus ''G'' = ''G''<sub>1</sub> + ''G''<sub>2</sub> and bulk modulus <math>\kappa</math>. If  ''G''<sub>2</sub> = 0, the material is a Neo-Hookean material. See below for an alternate compressibility terms. Some hyperelastic rubber models assume incompressible materials, which corresponds to <math>\kappa\to\infty</math>; such models do not work in dynamic code (because the dilational wave speed is infinite).

Revision as of 12:07, 28 December 2013

Constitutive Law

The Mooney-Rivlin material Mooney-Rivlin is an isotropic, elastic material in large strains using the hyperelastic formulation.

Within the framework of hyperelasticity, the existence of a stored-energy W (per unit deformed or indeformed volume), function of a deformation gradient tensor (F, is postulated (Weichert et al., 2000; Truesdell and Noll 1965 and Ogden, 1984) and the constitutive law derived from a strain energy function that is a function of the deformation gradient tensor F, according to the inequality of Clausius-Duheim. Regarding to the objectivity conditions and using the representation theorem (Truesdell and Noll, 1965), the strain energy function is a function of the invariants of a strain tensor. With the left Cauchy-Green strain tensor, Cauchy stress is given by:

      [math]\displaystyle{ \mathbf{\sigma} =2 {\delta W \over {\delta \mathbf{B}}} \mathbf{B} }[/math]

In a Mooney-Rivlin material, stored stain energy is give by the expression:

      [math]\displaystyle{ W =U(J) + {G_{1} \over 2 } (\bar I_{1}-3) + {G_{2} \over 2 }(\bar I_{2}-3) }[/math]

where J (= det F) is relative volume change, G1 and G2 are shear material properties, and [math]\displaystyle{ \bar I_{1} }[/math] and [math]\displaystyle{ \bar I_{2} }[/math] are the strain invarients:

      [math]\displaystyle{ \bar I_{1} ={B_{xx}+B_{yy}+B_{zz} \over J^{2/3}} \qquad {\rm and} \qquad \bar I_{2} ={1 \over 2} (\bar I_{1}^2-{{B_{xx}^2+B_{yy}^2+B_{zz}^2+2B_{xy}^2+2B_{xz}^2+2B_{yz}^2} \over J^{2/3}}) }[/math]

This material allows three options for the volumetric energy term:

      [math]\displaystyle{ U(J) ={\kappa\over 2 }({1\over 2 }(J^2-1)-\ln J) \qquad({\rm UJOption}=0) }[/math]

      [math]\displaystyle{ U(J) ={\kappa\over 2 }(J-1)^2 \qquad\qquad({\rm UJOption}=1) }[/math]

      [math]\displaystyle{ U(J) ={\kappa\over 2 }(\ln J)^2 \qquad\qquad({\rm UJOption}=2) }[/math]

where [math]\displaystyle{ \kappa }[/math] is bulk modulus. At low strains, this material is equivalent to a linear elastic, isotropic material with shear modulus G = G1 + G2 and bulk modulus [math]\displaystyle{ \kappa }[/math]. If G2 = 0, the material is a Neo-Hookean material. See below for an alternate compressibility terms. Some hyperelastic rubber models assume incompressible materials, which corresponds to [math]\displaystyle{ \kappa\to\infty }[/math]; such models do not work in dynamic code (because the dilational wave speed is infinite).

The Cauchy (or true stress) stress tensor is determined by differentiating the strain energy function. It is calculated by the addition of press and deviatoric stress, [math]\displaystyle{ \mathbf{\sigma} = -p \mathbf{I} + \bar \mathbf{\sigma} }[/math] resulting in:

      [math]\displaystyle{ \mathbf{\sigma} =\kappa(J-1)\mathbf{I} + {G_{1} \over J^{5/3} } (\mathbf{B}-{I_{1} \over3}\mathbf{I}) + {G_{2} \over J^{7/3}} (I_{1} \mathbf{B}-\mathbf{B^2}-{2I_{2} \over3}\mathbf{I}) }[/math]

where [math]\displaystyle{ I_{1} = J^{2/3} \bar I_{1} }[/math] and [math]\displaystyle{ I_{2} = J^{4/3} \bar I_{2} }[/math] .

Material Properties

The material properties are enters using:

Property Description Units Default
K Bulk modulus MPa none
G1 The G1 shear modulus MPa none
G2 The G2 shear modulus MPa none
UJOption Set to 0, 1, or 2, to select the energy term from above none 2
alpha Thermal expansion coefficient ppm/M 40

History Variables

None

Examples

These commands model polymer as an isotropic, hyperelastic material with G1=G2 =G/2 (using scripted or XML commands):

Material "polymer","polymer","Mooney"
   E 2500
   nu .4
   alpha 60
   rho 1.2
 Done
 
<Material Type="8" Name="polymer">
   <rho>1.2</rho>
   <G1>35.714285714</G1>
   <G2>35.714285714</G2>
   <K>166.66666666</K>
   <alpha>60</alpha>
 </Material>

References

• Ogden R. W., (1984), Non-linear elastic deformations. Wiley et Sons, New York.

• Truesdell C. and W. Noll W (1965), The nonlienar field theories of mechanics, Edition Handbuch der Physik, Vol. III. Spinger, Berlin.

• Weichert D. et Y. Basar, (2000), Nonlinear continuum mechanics of solids, Springer, New York.