Difference between revisions of "Transversely Isotropic Viscoelastic Material"

From OSUPDOCS
Jump to navigation Jump to search
Line 7: Line 7:
The stress (σ) and strain (ε) are related by:
The stress (σ) and strain (ε) are related by:


     
    
<math>\sigma(t) = \mathbf{C}(t) * \varepsilon(t)</math>
<math>\sigma(t) = \mathbf{C}(t) * \varepsilon(t)</math>


Here <math>*</math> indicates convolution (or Boltzman's superposition) between time-dependent stiffness tensor (<math>\mathbf{C}(t)</math>) and strain tensor.
Here <math>*</math> indicates convolution (or Boltzman's superposition) between time-dependent stiffness tensor (<math>\mathbf{C}(t)</math>) and strain tensor. In Voight-notation with unique axis in the ''z'' direction, the time-dependent stiffness tensor is
 
&nbsp;&nbsp;&nbsp;&nbsp;
<math>\mathbf{C}(t) = \left[\begin{array}{cccccc}
        K_T(t)+G_T(t) & K_T(t)-G_T(t) & \ell(t) & 0 & 0 & 0 \\
        K_T(t)-G_T(t) & K_T+G_T & \ell & 0 & 0 & 0 \\
        \ell(t) & \ell(t)  & n(t) & 0 & 0 & 0 \\
          0 & 0 & 0 & G_A(t) & 0 & 0 \\
            0 & 0 & 0 & 0 & G_A(t) & 0 \\
            0 & 0 & 0 & 0 & 0 & G_T(t)
        \end{array}\right]</math>
 
Here

Revision as of 16:46, 7 January 2021

Constitutive Law

(This material is available only in OSParticulas because it is still in development)

This anisotropic MPM material is a small strain, linear viscoelastic material that extends the Viscoelastic Material to model anisotropic viscoelasticity.

The stress (σ) and strain (ε) are related by:

     [math]\displaystyle{ \sigma(t) = \mathbf{C}(t) * \varepsilon(t) }[/math]

Here [math]\displaystyle{ * }[/math] indicates convolution (or Boltzman's superposition) between time-dependent stiffness tensor ([math]\displaystyle{ \mathbf{C}(t) }[/math]) and strain tensor. In Voight-notation with unique axis in the z direction, the time-dependent stiffness tensor is

     [math]\displaystyle{ \mathbf{C}(t) = \left[\begin{array}{cccccc} K_T(t)+G_T(t) & K_T(t)-G_T(t) & \ell(t) & 0 & 0 & 0 \\ K_T(t)-G_T(t) & K_T+G_T & \ell & 0 & 0 & 0 \\ \ell(t) & \ell(t) & n(t) & 0 & 0 & 0 \\ 0 & 0 & 0 & G_A(t) & 0 & 0 \\ 0 & 0 & 0 & 0 & G_A(t) & 0 \\ 0 & 0 & 0 & 0 & 0 & G_T(t) \end{array}\right] }[/math]

Here