Mooney Material

From OSUPDOCS
Jump to navigation Jump to search

Constitutive Law

The Mooney-Rivlin material Mooney-Rivlin is an isotropic, elastic material in large strains using the hyperelastic formulation.

Within the framework of hyperelasticity, the existence of a stored-energy W (per unit deformed or indeformed volume), function of a deformation gradient tensor, is postulated (Weichert et al., 2000; Truesdell and Noll 1965 and Ogden, 1984) and the constitutive law derived from a strain energy function that is a function of the deformation gradient tensor F, according to the inequality of Clausius-Duheim. Regarding to the objectivity conditions and using the representation theorem (Truesdell and Noll, 1965), the strain energy function is a function of the invariants of a strain tensor. With the left Cauchy-Green strain tensor, Cauchy stress is given by:

[math]\displaystyle{ \mathbf{\sigma} =2 {\delta W \over {\delta \mathbf{B}}} \mathbf{B} }[/math]

The Mooney-Rivlin material stored stain energy is represented by its representation to volumetric/deviatoric expression:

      [math]\displaystyle{ W =U(J) + {G_{1} \over 2 } (\bar I_{1}-3) + {G_{2} \over 2 }(\bar I_{2}-3) }[/math]

with 3 possible forms of the volumetric energy term U(J):

[math]\displaystyle{ U(J) ={\kappa\over 2 }(J-1)^2 {\rm ,} \qquad U(J) ={\kappa\over 2 }({1\over 2 }(J^2-1)-ln J) \qquad {\rm and} \qquad U(J) ={\kappa\over 2 }(ln J)^2 }[/math]


where G1, G2 and [math]\displaystyle{ \kappa }[/math] are material properties, [math]\displaystyle{ \bar I_{1} }[/math], [math]\displaystyle{ \bar I_{2} }[/math] and J are the invariant of the chosen strain tensor, with J=det F and

[math]\displaystyle{ \bar I_{1} ={B_{xx}+B_{yy}+B_{zz} \over J^{2/3}} \qquad {\rm and} \qquad \bar I_{2} ={1 \over 2} (\bar I_{1}^2-{{B_{xx}^2+B_{yy}^2+B_{zz}^2+2B_{xy}^2+2B_{xz}^2+2B_{yz}^2} \over J^{2/3}}) }[/math]


In low strains, this material is equivalent to a linear elastic, isotropic material with shear modulus G = G1 + G2 and bulk modulus [math]\displaystyle{ \kappa }[/math]. If G2 = 0, the material is a Neo-Hookean material. See below for an alternate compressibility terms. Some hyperelastic rubber models assume incompressible materials, which corresponds to [math]\displaystyle{ \kappa }[/math] → ∞; such models do not work in dynamic code (because wave speed is infinite).  The Cauchy (or true stress) stress tensor is determined by differentiating the strain energy function. It is represented here by the addition of the spheric (pressure) and the deviatoric stress tensors, [math]\displaystyle{ \mathbf{\sigma} = p \mathbf{I} + \bar \mathbf{\sigma} }[/math] given by:

[math]\displaystyle{ \mathbf{\sigma} =\kappa(J-1)\mathbf{I} + {G_{1} \over J^{5/3} } (\mathbf{B}-{I_{1} \over3}\mathbf{I}) + {G_{2} \over J^{7/3}} (I_{1} \mathbf{B}-\mathbf{B^2}-{2I_{2} \over3}\mathbf{I}) }[/math]


where [math]\displaystyle{ I_{1} = J^{2/3} \bar I_{1} \qquad {\rm and} \qquad I_{2} = J^{4/3} \bar I_{2} }[/math] .

Material Properties

The constants involved in the strain energy function, are equivalent in small strains to properties of isotropic elastic material with Poisson's ratio [math]\displaystyle{ {\nu} }[/math] as well as shear modulus G = G1 + G2 and bulk modulus [math]\displaystyle{ {\kappa} }[/math] given by

[math]\displaystyle{ G = {E \over 2({1+\nu })} \qquad {\rm and} \qquad \kappa = {E \over 3({1-2\nu })} }[/math].

Property Description Units Default
E Elastic modulus MPa none
G1, G2 Shear modulus MPa none
alpha Thermal expansion coefficient ppm/M 40

History Variables

None

Examples

These commands model polymer as an isotropic, hyperelastic material with G1=G2 =G/2 (using scripted or XML commands):

Material "polymer","polymer","Mooney"
   E 2500
   nu .4
   alpha 60
   rho 1.2
 Done
 
<Material Type="8" Name="polymer">
   <rho>1.2</rho>
   <G1>35.714285714</G1>
   <G2>35.714285714</G2>
   <K>166.66666666</K>
   <alpha>60</alpha>
 </Material>

References

• Ogden R. W., (1984), Non-linear elastic deformations. Wiley et Sons, New York.

• Truesdell C. and W. Noll W (1965), The nonlienar field theories of mechanics, Edition Handbuch der Physik, Vol. III. Spinger, Berlin.

• Weichert D. et Y. Basar, (2000), Nonlinear continuum mechanics of solids, Springer, New York.