Difference between revisions of "Orthotropic Material"

From OSUPDOCS
Jump to navigation Jump to search
(Created page with "== Constitutive Law == This anisotropic MPM material (or FEA material) is a [[Material Models#Linear Elastic Small Strain Material...")
 
Line 18: Line 18:


and the order of the shear terms is by the standard convention. The stiffness and compliance tensors contract to 6X6 matrices while all thermal and moisture expansion tensors contract to a vector. When used as an [[FEA Material Models|FEA material]], the solvent expansion and solvent concentration terms are not used.
and the order of the shear terms is by the standard convention. The stiffness and compliance tensors contract to 6X6 matrices while all thermal and moisture expansion tensors contract to a vector. When used as an [[FEA Material Models|FEA material]], the solvent expansion and solvent concentration terms are not used.
== Material Matrices ==
For an orthotropic material, the stiffness and compliance tensors are:
     
<math>
  \mathbf{C}^{-1} = \mathbf{S} =
  \left(\begin{array}{cccccc}
          {1\over E_x} & -{\nu_{xy}\over E_x}& -{\nu_{xy}\over E_x}
                          & 0 & 0 & 0 \\
          -{\nu_{yx}\over E_y} & {1\over E_y} & -{\nu_{yz}\over E_z}
                          & 0 & 0 & 0 \\
          -{\nu_{zx}\over E_x} & -{\nu_{zy}\over E_z} & {1\over E_z}
                          & 0 & 0 & 0 \\
                    0 & 0 & 0 & {1\over G_{xz}} & 0 & 0 \\
                    0 & 0 & 0 & 0 & {1\over G_{yz}} & 0 \\
                    0 & 0 & 0 & 0 & 0 & {1\over G_{xy}}
            \end{array}\right)
</math>
where E and G are tensile and shear moduli, &nu; are Poisson's ratios, and x, y, and z refer to orthogonal axes of the material. The thermal and solvent expansion tensors are
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>\vec\alpha = (\alpha_x, \alpha_y,\alpha_z,0,0,0)</math>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>\vec\beta = (\beta_x, \beta_y,\beta_z,0,0,0)</math>
where again, x, y, and z refer to orthogonal axes of the material. The stress-temperature and stress-concentration tensors are found from
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>\vec M = -\mathbf{C}\vec\alpha \quad{\rm and}\quad \vec M_\beta = -\mathbf{C}\vec\beta</math>
All these properties are set as explained [[#Material Properties|below]]. The solvent expansion terms for for MPM only.
== Material Properties ==
== History Data ==
None
== Examples ==

Revision as of 11:42, 10 September 2013

Constitutive Law

This anisotropic MPM material (or FEA material) is a small strain, linear elastic material. The stress (σ) and strain (ε) are related by:

      [math]\displaystyle{ \vec\varepsilon = \mathbf{S}\vec\sigma + \vec\alpha\Delta T + \vec\beta c }[/math]

      [math]\displaystyle{ \vec\sigma = \mathbf{C}\vec\varepsilon + \vec M\Delta T + \vec M_\beta c }[/math]

where S and C are the compliance and stiffness tensors, [math]\displaystyle{ \vec\alpha }[/math] and [math]\displaystyle{ \vec\beta }[/math] are the thermal and solvent expansion tensors, and [math]\displaystyle{ \vec M }[/math] and [math]\displaystyle{ \vec M_\beta }[/math] are the stress-temperature and stress-concentraion tensors. ΔT is difference between current temperature and the stress free temperature and c is the weight fracture solvent concentration. These equations use contracted notation where stress and strain tensors contract to vectors:

      [math]\displaystyle{ \vec\varepsilon = (\varepsilon_{xx},\varepsilon_{yy},\varepsilon_{zz},\varepsilon_{yz},\varepsilon_{xz},\varepsilon_{xy}) }[/math]

      [math]\displaystyle{ \vec\sigma = (\sigma_{xx},\sigma_{yy},\sigma_{zz},\sigma_{yz},\sigma_{xz},\sigma_{xy}) }[/math]

and the order of the shear terms is by the standard convention. The stiffness and compliance tensors contract to 6X6 matrices while all thermal and moisture expansion tensors contract to a vector. When used as an FEA material, the solvent expansion and solvent concentration terms are not used.

Material Matrices

For an orthotropic material, the stiffness and compliance tensors are:

      [math]\displaystyle{ \mathbf{C}^{-1} = \mathbf{S} = \left(\begin{array}{cccccc} {1\over E_x} & -{\nu_{xy}\over E_x}& -{\nu_{xy}\over E_x} & 0 & 0 & 0 \\ -{\nu_{yx}\over E_y} & {1\over E_y} & -{\nu_{yz}\over E_z} & 0 & 0 & 0 \\ -{\nu_{zx}\over E_x} & -{\nu_{zy}\over E_z} & {1\over E_z} & 0 & 0 & 0 \\ 0 & 0 & 0 & {1\over G_{xz}} & 0 & 0 \\ 0 & 0 & 0 & 0 & {1\over G_{yz}} & 0 \\ 0 & 0 & 0 & 0 & 0 & {1\over G_{xy}} \end{array}\right) }[/math]

where E and G are tensile and shear moduli, ν are Poisson's ratios, and x, y, and z refer to orthogonal axes of the material. The thermal and solvent expansion tensors are

      [math]\displaystyle{ \vec\alpha = (\alpha_x, \alpha_y,\alpha_z,0,0,0) }[/math]

      [math]\displaystyle{ \vec\beta = (\beta_x, \beta_y,\beta_z,0,0,0) }[/math]

where again, x, y, and z refer to orthogonal axes of the material. The stress-temperature and stress-concentration tensors are found from

      [math]\displaystyle{ \vec M = -\mathbf{C}\vec\alpha \quad{\rm and}\quad \vec M_\beta = -\mathbf{C}\vec\beta }[/math]

All these properties are set as explained below. The solvent expansion terms for for MPM only.

Material Properties

History Data

None

Examples