Difference between revisions of "Isotropic Material"

From OSUPDOCS
Jump to navigation Jump to search
Line 23: Line 23:
|-
|-
| alpha || Thermal expansion coefficient || ppm/M || 40
| alpha || Thermal expansion coefficient || ppm/M || 40
|-
| ([[Common Material Properties|other]]) || Properties common to all materials || varies || varies
|}
|}


Line 41: Line 43:


Other combinations are easily derived, but the above examples are the most common.
Other combinations are easily derived, but the above examples are the most common.
The following properties are only allowed in MPM calculations:
{| class="wikitable"
|-
! Property !! Description !! Units !! Default
|-
| beta || Solvent expansion coefficient || 1/(wt fraction) || 0
|-
| D || Solvent diffusion constant || mm<sup>2</sup>/sec || 0
|-
| kCond || Thermal conductivity || W/(m-K) || 0
|-
| ([[Common Material Properties|other]]) || Properties common to all materials || varies || varies
|}


== History Variables ==
== History Variables ==

Revision as of 10:31, 6 January 2014

Constitutive Law

This MPM material (or FEA material) is a small strain, linear elastic material. The components of stress are related to components of strain by

      [math]\displaystyle{ \sigma_{ij} = \bigl(\lambda\varepsilon_{ii} - 3K(\alpha \Delta T+\beta c)\bigr)\delta_{ij} + 2G\varepsilon_{ij} }[/math]

where λ is the Lame coefficient, K is bulk modulus, α is thermal expansion coefficient, ΔT is temperature difference, β is solvent expansion coefficient (MPM only), c is solvent concentration (MPM only), and G is shear modulus. Two other isotropic material properties are modulus, E, and Poisson's ratio, ν.

Material Properties

Although deformation properties of an isotropic MPM material (or FEA material) can be defined by any two of λ, K, G, E, and ν, this material's properties can only be defined by specifying any two (and exactly two) of E, G, and ν. Those three and other properties for this isotropic MPM material (or FEA material) are:

Property Description Units Default
E Tensile modulus MPa none
G Shear modulus MPa none
nu Poisson's ratio none none
alpha Thermal expansion coefficient ppm/M 40
(other) Properties common to all materials varies varies

If you know K or λ instead of E, G, and ν, they are easily converted to E and ν. Given K and G:

      [math]\displaystyle{ E = {9KG \over 3K+G} , \qquad G = G \qquad {\rm and} , \qquad \nu = {3K-2G\over 6K+2G} }[/math]

or given λ and G:

      [math]\displaystyle{ E = G\left({3\lambda + 2G \over \lambda + G}\right), \qquad G = G \qquad {\rm and} \qquad {\lambda\over 2(\lambda+G)} }[/math]

or given K and ν:

      [math]\displaystyle{ E = 3K(1-2\nu) , \qquad G ={ 3K(1-2\nu)\over 2(1+\nu)}, \qquad {\rm and} \qquad \nu = \nu }[/math]

Other combinations are easily derived, but the above examples are the most common.

History Variables

None

Examples

These commands model copper as an isotropic, elastic material (using scripted or XML commands):

Material "copper","Copper","Isotropic"
  E 120000
  nu .34
  alpha 16.5
  rho 8.96
  kCond 401
  Cv 385
Done