Difference between revisions of "Isotropic Material Failure Surface"

From OSUPDOCS
Jump to navigation Jump to search
Line 2: Line 2:
== Introduction ==
== Introduction ==


[[File:MaxPrinciple.png|right]]
This [[Damage Initiation Laws|damage initiation law]] predicts that failure initiates when maximum principal stress exceeds tensile strength of the material or when maximum shear stress exceeds shear strength of the material. It can also model pressure-dependent initiation stresses. Because it deals with principal stresses and tensile failure is the same regardless of direction, this law is only appropriate for isotropic materials such as an [[Isotropic Softening Material|IsoSoftening material]].
 
This [[Damage Initiation Laws|damage initiation law]] predicts that failure initiates when maximum principal stress exceeds tensile strength of the material or when maximum shear stress exceeds shear strength of the material. Because it deals with principal stresses and tensile failure is the same regardless of direction, this law is only appropriate for isotropic materials such as an [[Isotropic Softening Material|IsoSoftening material]].


== Failure Surface ==
== Failure Surface ==

Revision as of 13:21, 31 January 2023

Introduction

This damage initiation law predicts that failure initiates when maximum principal stress exceeds tensile strength of the material or when maximum shear stress exceeds shear strength of the material. It can also model pressure-dependent initiation stresses. Because it deals with principal stresses and tensile failure is the same regardless of direction, this law is only appropriate for isotropic materials such as an IsoSoftening material.

Failure Surface

Maximum principal failure stress surfaces for 2D and 3D simulations are shown in the figure. When viewed down the [math]\displaystyle{ \sigma_1=\sigma_2=\sigma_3 }[/math] diagonal, the 3D surface is a hexagonal rod with point-to-point diagonal equal to [math]\displaystyle{ \tau_t }[/math] and apex at [math]\displaystyle{ \sigma_1=\sigma_2=\sigma_3=\sigma_n }[/math]. For tensile failure, the crack normal is along the maximum principal stress direction; for shear failure, it is rotated 45 degrees from the principal stress directions.

Note this failure criterion never fails under hydrostatic compression. Compression failure only occurs if the principal stress point moves far enough from the diagonal to reach the shear failure surface. The failure process is then by shear.

Damage Law Properties

The following table lists the input properties for maximum principal stress failure surface:

Property Description Units Default
sigmac Critical tensile stress for failure pressure units infinite
tauc Critical shear stress for failure pressure units infinite