Difference between revisions of "Orthotropic Material"

From OSUPDOCS
Jump to navigation Jump to search
(Created page with "== Constitutive Law == This anisotropic MPM material (or FEA material) is a [[Material Models#Linear Elastic Small Strain Material...")
 
 
(19 intermediate revisions by the same user not shown)
Line 18: Line 18:


and the order of the shear terms is by the standard convention. The stiffness and compliance tensors contract to 6X6 matrices while all thermal and moisture expansion tensors contract to a vector. When used as an [[FEA Material Models|FEA material]], the solvent expansion and solvent concentration terms are not used.
and the order of the shear terms is by the standard convention. The stiffness and compliance tensors contract to 6X6 matrices while all thermal and moisture expansion tensors contract to a vector. When used as an [[FEA Material Models|FEA material]], the solvent expansion and solvent concentration terms are not used.
== Material Matrices ==
For an orthotropic material, the stiffness and compliance tensors are:
     
<math>
  \mathbf{C}^{-1} = \mathbf{S} =
  \left(\begin{array}{cccccc}
          {1\over E_x} & -{\nu_{xy}\over E_x}& -{\nu_{xy}\over E_x}
                          & 0 & 0 & 0 \\
          -{\nu_{yx}\over E_y} & {1\over E_y} & -{\nu_{yz}\over E_y}
                          & 0 & 0 & 0 \\
          -{\nu_{zx}\over E_z} & -{\nu_{zy}\over E_z} & {1\over E_z}
                          & 0 & 0 & 0 \\
                    0 & 0 & 0 & {1\over G_{xz}} & 0 & 0 \\
                    0 & 0 & 0 & 0 & {1\over G_{yz}} & 0 \\
                    0 & 0 & 0 & 0 & 0 & {1\over G_{xy}}
            \end{array}\right)
</math>
where E and G are tensile and shear moduli, &nu; are Poisson's ratios, and x, y, and z refer to orthogonal axes of the material. The thermal and solvent expansion tensors are
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>\vec\alpha = (\alpha_x, \alpha_y,\alpha_z,0,0,0)</math>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>\vec\beta = (\beta_x, \beta_y,\beta_z,0,0,0)</math>
where again, x, y, and z refer to orthogonal axes of the material. The stress-temperature and stress-concentration tensors are found from
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>\vec M = -\mathbf{C}\vec\alpha \quad{\rm and}\quad \vec M_\beta = -\mathbf{C}\vec\beta</math>
All these properties are set as explained [[#Material Properties|below]]. The solvent expansion terms are for MPM only.
== Material Properties ==
The properties are
{| class="wikitable"
|-
! Property !! Description !! Units !! Default
|-
| Ex (or ER) || x-direction modulus (or R if axiysmmetric) || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || none
|-
| Ey (or EZ) || y-direction modulus (or Z if axisymmetric) || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || none
|-
| Ez (or ET) || z-direction modulus (or &theta; if axisymmetric) || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || none
|-
| Gxy, Gyx (or GRZ,GZR) || x-y plane shear modulus (or R-Z if asymmetric) || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || none
|-
| Gxz, Gxz (or GRT,GTR) || x-z plane shear modulus (or R-&theta; if asymmetric) || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || none
|-
| Gyz, Gzy (or GZT,GTZ) || y-z plane shear modulus (or Z-&theta; if asymmetric) || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || none
|-
| nuxy (or nuRZ) || x-y Poisson's ratio (or R-Z if asymmetric) || none || none
|-
| nuyx (or nuZR) || y-x Poisson's ratio (or Z-R if asymmetric) || none || none
|-
| nuxz (or nuRT) || x-z Poisson's ratio (or R-&theta; if asymmetric) || none || none
|-
| nuzx (or nuTR) || z-x Poisson's ratio (or &theta;-R if asymmetric) || none || none
|-
| nuyz (or nuZT) || y-z Poisson's ratio (or Z-&theta; if asymmetric) || none || none
|-
| nuzy (or nuTZ) || z-y Poisson's ratio (or &theta;-Z if asymmetric) || none || none
|-
| alphax (or alphaR) || x-direction thermal expansion coefficient (or R if axisymmetric) || ppm/K || none
|-
| alphay (or alphaZ) || y-direction thermal expansion coefficient (or Z if axisymmetric) || ppm/K || none
|-
| alphaz (or alphaT) || z-direction thermal expansion coefficient (or &theta; if axisymmetric) || ppm/K || none
|-
| swapz || if this property is 1, the x and z axis properties are swapped from input values; if it is 2 or greater, the y and z axis properties are swapped. This property provides an alternative to rotating material axes and material directions align with one of the axes. || none || 0
|}
You should only set one for each pair of Poisson's ratios (''e.g.'', one of <tt>nuxy</tt> and <tt>nuyx</tt>). Note that to define a valid material, the Poisson's ratios must satisfy:
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>\nu_{ij}\nu_{ji}<1 \quad\left({\rm or}\ \ |\nu_{ij}|<\sqrt{\frac{E_{i}}{E_{j}}}\right) \qquad {\rm and} \qquad
      2\nu_{xy}\nu_{yz}\nu_{zx} <  1-\nu_{xy}\nu_{yx}-\nu_{yz}\nu_{zy}-\nu_{xz}\nu_{zx}</math>
The following properties are only allowed in MPM calculations:
{| class="wikitable"
|-
! Property !! Description !! Units !! Default
|-
| betax (or betaR) || x-direction solvent expansion coefficient (or R if axisymmetric) || 1/(wt fraction) || 0
|-
| betay (or betaZ) || y-direction solvent expansion coefficient (or Z if axisymmetric) || 1/(wt fraction) || 0
|-
| betaz (or betaT) || z-direction solvent expansion coefficient (or &theta; if axisymmetric) || 1/(wt fraction) || 0
|-
| Dx (or DR) || x-direction solvent diffusion constant (or R if axisymmetric) || [[ConsistentUnits Command#Legacy and Consistent Units|diffusion units]] || 0
|-
| Dy (or DZ) || y-direction solvent diffusion constant (or Z if axisymmetric) || [[ConsistentUnits Command#Legacy and Consistent Units|diffusion units]] || 0
|-
| Dz (or DT) || z-direction solvent diffusion constant (or &theta; if axisymmetric) || [[ConsistentUnits Command#Legacy and Consistent Units|diffusion units]] || 0
|-
| kCondx (or kCondR) || x-direction thermal conductivity (or R if axisymmetric) || [[ConsistentUnits Command#Legacy and Consistent Units|conductivity units]] || 0
|-
| kCondy (or kCondZ) || x-direction thermal conductivity (or Z if axisymmetric) || [[ConsistentUnits Command#Legacy and Consistent Units|conductivity units]] || 0
|-
| kCondz (or kCondT) || x-direction thermal conductivity (or &theta; if axisymmetric) || [[ConsistentUnits Command#Legacy and Consistent Units|conductivity units]] || 0
|-
| ([[Common Material Properties|other]]) || Properties common to all materials || varies || varies
|}
== History Data ==
None
== Examples ==

Latest revision as of 16:53, 2 February 2023

Constitutive Law

This anisotropic MPM material (or FEA material) is a small strain, linear elastic material. The stress (σ) and strain (ε) are related by:

      [math]\displaystyle{ \vec\varepsilon = \mathbf{S}\vec\sigma + \vec\alpha\Delta T + \vec\beta c }[/math]

      [math]\displaystyle{ \vec\sigma = \mathbf{C}\vec\varepsilon + \vec M\Delta T + \vec M_\beta c }[/math]

where S and C are the compliance and stiffness tensors, [math]\displaystyle{ \vec\alpha }[/math] and [math]\displaystyle{ \vec\beta }[/math] are the thermal and solvent expansion tensors, and [math]\displaystyle{ \vec M }[/math] and [math]\displaystyle{ \vec M_\beta }[/math] are the stress-temperature and stress-concentraion tensors. ΔT is difference between current temperature and the stress free temperature and c is the weight fracture solvent concentration. These equations use contracted notation where stress and strain tensors contract to vectors:

      [math]\displaystyle{ \vec\varepsilon = (\varepsilon_{xx},\varepsilon_{yy},\varepsilon_{zz},\varepsilon_{yz},\varepsilon_{xz},\varepsilon_{xy}) }[/math]

      [math]\displaystyle{ \vec\sigma = (\sigma_{xx},\sigma_{yy},\sigma_{zz},\sigma_{yz},\sigma_{xz},\sigma_{xy}) }[/math]

and the order of the shear terms is by the standard convention. The stiffness and compliance tensors contract to 6X6 matrices while all thermal and moisture expansion tensors contract to a vector. When used as an FEA material, the solvent expansion and solvent concentration terms are not used.

Material Matrices

For an orthotropic material, the stiffness and compliance tensors are:

      [math]\displaystyle{ \mathbf{C}^{-1} = \mathbf{S} = \left(\begin{array}{cccccc} {1\over E_x} & -{\nu_{xy}\over E_x}& -{\nu_{xy}\over E_x} & 0 & 0 & 0 \\ -{\nu_{yx}\over E_y} & {1\over E_y} & -{\nu_{yz}\over E_y} & 0 & 0 & 0 \\ -{\nu_{zx}\over E_z} & -{\nu_{zy}\over E_z} & {1\over E_z} & 0 & 0 & 0 \\ 0 & 0 & 0 & {1\over G_{xz}} & 0 & 0 \\ 0 & 0 & 0 & 0 & {1\over G_{yz}} & 0 \\ 0 & 0 & 0 & 0 & 0 & {1\over G_{xy}} \end{array}\right) }[/math]

where E and G are tensile and shear moduli, ν are Poisson's ratios, and x, y, and z refer to orthogonal axes of the material. The thermal and solvent expansion tensors are

      [math]\displaystyle{ \vec\alpha = (\alpha_x, \alpha_y,\alpha_z,0,0,0) }[/math]

      [math]\displaystyle{ \vec\beta = (\beta_x, \beta_y,\beta_z,0,0,0) }[/math]

where again, x, y, and z refer to orthogonal axes of the material. The stress-temperature and stress-concentration tensors are found from

      [math]\displaystyle{ \vec M = -\mathbf{C}\vec\alpha \quad{\rm and}\quad \vec M_\beta = -\mathbf{C}\vec\beta }[/math]

All these properties are set as explained below. The solvent expansion terms are for MPM only.

Material Properties

The properties are

Property Description Units Default
Ex (or ER) x-direction modulus (or R if axiysmmetric) pressure units none
Ey (or EZ) y-direction modulus (or Z if axisymmetric) pressure units none
Ez (or ET) z-direction modulus (or θ if axisymmetric) pressure units none
Gxy, Gyx (or GRZ,GZR) x-y plane shear modulus (or R-Z if asymmetric) pressure units none
Gxz, Gxz (or GRT,GTR) x-z plane shear modulus (or R-θ if asymmetric) pressure units none
Gyz, Gzy (or GZT,GTZ) y-z plane shear modulus (or Z-θ if asymmetric) pressure units none
nuxy (or nuRZ) x-y Poisson's ratio (or R-Z if asymmetric) none none
nuyx (or nuZR) y-x Poisson's ratio (or Z-R if asymmetric) none none
nuxz (or nuRT) x-z Poisson's ratio (or R-θ if asymmetric) none none
nuzx (or nuTR) z-x Poisson's ratio (or θ-R if asymmetric) none none
nuyz (or nuZT) y-z Poisson's ratio (or Z-θ if asymmetric) none none
nuzy (or nuTZ) z-y Poisson's ratio (or θ-Z if asymmetric) none none
alphax (or alphaR) x-direction thermal expansion coefficient (or R if axisymmetric) ppm/K none
alphay (or alphaZ) y-direction thermal expansion coefficient (or Z if axisymmetric) ppm/K none
alphaz (or alphaT) z-direction thermal expansion coefficient (or θ if axisymmetric) ppm/K none
swapz if this property is 1, the x and z axis properties are swapped from input values; if it is 2 or greater, the y and z axis properties are swapped. This property provides an alternative to rotating material axes and material directions align with one of the axes. none 0

You should only set one for each pair of Poisson's ratios (e.g., one of nuxy and nuyx). Note that to define a valid material, the Poisson's ratios must satisfy:

      [math]\displaystyle{ \nu_{ij}\nu_{ji}\lt 1 \quad\left({\rm or}\ \ |\nu_{ij}|\lt \sqrt{\frac{E_{i}}{E_{j}}}\right) \qquad {\rm and} \qquad 2\nu_{xy}\nu_{yz}\nu_{zx} \lt 1-\nu_{xy}\nu_{yx}-\nu_{yz}\nu_{zy}-\nu_{xz}\nu_{zx} }[/math]

The following properties are only allowed in MPM calculations:

Property Description Units Default
betax (or betaR) x-direction solvent expansion coefficient (or R if axisymmetric) 1/(wt fraction) 0
betay (or betaZ) y-direction solvent expansion coefficient (or Z if axisymmetric) 1/(wt fraction) 0
betaz (or betaT) z-direction solvent expansion coefficient (or θ if axisymmetric) 1/(wt fraction) 0
Dx (or DR) x-direction solvent diffusion constant (or R if axisymmetric) diffusion units 0
Dy (or DZ) y-direction solvent diffusion constant (or Z if axisymmetric) diffusion units 0
Dz (or DT) z-direction solvent diffusion constant (or θ if axisymmetric) diffusion units 0
kCondx (or kCondR) x-direction thermal conductivity (or R if axisymmetric) conductivity units 0
kCondy (or kCondZ) x-direction thermal conductivity (or Z if axisymmetric) conductivity units 0
kCondz (or kCondT) x-direction thermal conductivity (or θ if axisymmetric) conductivity units 0
(other) Properties common to all materials varies varies

History Data

None

Examples