Difference between revisions of "Transversely Isotropic Material"

From OSUPDOCS
Jump to navigation Jump to search
Line 91: Line 91:
All these properties are set as explained [[#Material Properties|below]]. The solvent expansion terms are for MPM only.
All these properties are set as explained [[#Material Properties|below]]. The solvent expansion terms are for MPM only.


This transversely isotropic material is a special case of an [[Orthotropic Material|orthotropic material]] where <math>E_{xx}=E_{zz}=E_T</math>, <math>E_{yy}=E_A</math>, <math>\nu_{xy}=E_T\nu_A/E_A</math>, <math>\nu_{yx}=\nu_A</math>, <math>\nu_{xz}=\nu_{zx}=\nu_T</math>, <math>\nu_{yz}=\nu_A</math>, <math>\nu_{zy}=E_T\nu_A/E_A</math>, <math>G_{xy}=G_{yz}=G_A</math>, <math>G_{xz}=G_T=E_T/(2(1+\nu_T))</math>, <math>\alpha_{xx}=\alpha_{zz}=\alpha_T</math>, <math>\alpha_{yy}=\alpha_A</math>, <math>\beta_{xx}=\beta_{zz}=\alpha_T</math>, and <math>\beta_{yy}=\beta_A</math>.
This transversely isotropic material is a special case of an [[Orthotropic Material|orthotropic material]] where <math>E_{x}=E_{z}=E_T</math>, <math>E_{y}=E_A</math>, <math>\nu_{xy}=E_T\nu_A/E_A</math>, <math>\nu_{yx}=\nu_A</math>, <math>\nu_{xz}=\nu_{zx}=\nu_T</math>, <math>\nu_{yz}=\nu_A</math>, <math>\nu_{zy}=E_T\nu_A/E_A</math>, <math>G_{xy}=G_{yz}=G_A</math>, <math>G_{xz}=G_T=E_T/(2(1+\nu_T))</math>, <math>\alpha_{x}=\alpha_{z}=\alpha_T</math>, <math>\alpha_{y}=\alpha_A</math>, <math>\beta_{x}=\beta_{z}=\alpha_T</math>, and <math>\beta_{y}=\beta_A</math>.


== Material Properties ==
== Material Properties ==

Revision as of 17:50, 13 November 2019

Constitutive Law

This anisotropic MPM material (or FEA material) is a small strain, linear elastic material. The stress (σ) and strain (ε) are related by:

      [math]\displaystyle{ \vec\varepsilon = \mathbf{S}\vec\sigma + \vec\alpha\Delta T + \vec\beta c }[/math]

      [math]\displaystyle{ \vec\sigma = \mathbf{C}\vec\varepsilon + \vec M\Delta T + \vec M_\beta c }[/math]

where S and C are the compliance and stiffness tensors, [math]\displaystyle{ \vec\alpha }[/math] and [math]\displaystyle{ \vec\beta }[/math] are the thermal and solvent expansion tensors, and [math]\displaystyle{ \vec M }[/math] and [math]\displaystyle{ \vec M_\beta }[/math] are the stress-temperature and stress-concentraion tensors. ΔT is difference between current temperature and the stress free temperature and c is the weight fracture solvent concentration. These equations use contracted notation where stress and strain tensors contract to vectors:

      [math]\displaystyle{ \vec\varepsilon = (\varepsilon_{xx},\varepsilon_{yy},\varepsilon_{zz},\varepsilon_{yz},\varepsilon_{xz},\varepsilon_{xy}) }[/math]

      [math]\displaystyle{ \vec\sigma = (\sigma_{xx},\sigma_{yy},\sigma_{zz},\sigma_{yz},\sigma_{xz},\sigma_{xy}) }[/math]

and the order of the shear terms is by the standard convention. The stiffness and compliance tensors contract to 6X6 matrices while all thermal and moisture expansion tensors contract to a vector. When used as an FEA material, the solvent expansion and solvent concentration terms are not used.

In a transversely isotropic MPM material (or FEA material), one plane is isotropic while the direction normal to that plane defines a unique axis with different properties. Properties in the isotropic plane are subscripted "T" for transverse plane properties and properties along the unique axis are subscripted "A" for axial properties. You can pick from two types of transversely isotropic materials, which differ only by orientation on the unique axes.

Transverse 1

In this transversely isotropic MPM material (or FEA material), the isotropic plane is the x-y plane, which is the plane for 2D or axisymmetric analyses. The axial direction is along the z axis, which is in the thickness direction for 2D analyses or the hoop direction for axisymmetric anlayses. The stiffness and compliance tensors are:

      [math]\displaystyle{ \mathbf{C}^{-1} = \mathbf{S} = \left(\begin{array}{cccccc} {1\over E_T} & -{\nu_T\over E_T}& -{\nu_A\over E_A} & 0 & 0 & 0 \\ -{\nu_T\over E_T} & {1\over E_T} & -{\nu_A\over E_A} & 0 & 0 & 0 \\ -{\nu_A\over E_A} & -{\nu_A\over E_A} & {1\over E_A} & 0 & 0 & 0 \\ 0 & 0 & 0 & {1\over G_A} & 0 & 0 \\ 0 & 0 & 0 & 0 & {1\over G_A} & 0 \\ 0 & 0 & 0 & 0 & 0 & {1\over G_T} \end{array}\right) }[/math]

where E and G are tensile and shear moduli, ν are Poisson's ratios, and A and T refer to axial and transverse properties. The thermal and solvent expansion tensors are

      [math]\displaystyle{ \vec\alpha = (\alpha_T, \alpha_T,\alpha_A,0,0,0) }[/math]

      [math]\displaystyle{ \vec\beta = (\beta_T, \beta_T,\beta_A,0,0,0) }[/math]

where again, A and T refer to axial and transverse properties. The stress-temperature and stress-concentration tensors are found from

      [math]\displaystyle{ \vec M = -\mathbf{C}\vec\alpha \quad{\rm and}\quad \vec M_\beta = -\mathbf{C}\vec\beta }[/math]

All these properties are set as explained below. The solvent expansion terms are for MPM only.

Transverse 2

In this transversely isotropic MPM material (or FEA material), the isotropic plane is the x-z plane. The axial direction is along the y axis, which is in the plane for 2D analyses. For axisymmetric analyses, the isotropic plane is the r-θ plane and the axial direction is along the z axis. The stiffness and compliance tensors are:

      [math]\displaystyle{ \mathbf{C}^{-1} = \mathbf{S} = \left(\begin{array}{cccccc} {1\over E_T} & -{\nu_A\over E_A} & -{\nu_T\over E_T} & 0 & 0 & 0 \\ -{\nu_A\over E_A} & {1\over E_A} & -{\nu_A\over E_A} & 0 & 0 & 0 \\ -{\nu_T\over E_T} & -{\nu_A\over E_A} & {1\over E_T} & 0 & 0 & 0 \\ 0 & 0 & 0 & {1\over G_A} & 0 & 0 \\ 0 & 0 & 0 & 0 & {1\over G_T} & 0 \\ 0 & 0 & 0 & 0 & 0 & {1\over G_A} \end{array}\right) }[/math]

where E and G are tensile and shear moduli, ν are Poisson's ratios, and A and T refer to axial and transverse properties. The thermal and solvent expansion tensors are

      [math]\displaystyle{ \vec\alpha = (\alpha_T, \alpha_A,\alpha_T,0,0,0) }[/math]

      [math]\displaystyle{ \vec\beta = (\beta_T, \beta_A,\beta_T,0,0,0) }[/math]

where again, A and T refer to axial and transverse properties. The stress-temperature and stress-concentration tensors are found from

      [math]\displaystyle{ \vec M = -\mathbf{C}\vec\alpha \quad{\rm and}\quad \vec M_\beta = -\mathbf{C}\vec\beta }[/math]

All these properties are set as explained below. The solvent expansion terms are for MPM only.

This transversely isotropic material is a special case of an orthotropic material where [math]\displaystyle{ E_{x}=E_{z}=E_T }[/math], [math]\displaystyle{ E_{y}=E_A }[/math], [math]\displaystyle{ \nu_{xy}=E_T\nu_A/E_A }[/math], [math]\displaystyle{ \nu_{yx}=\nu_A }[/math], [math]\displaystyle{ \nu_{xz}=\nu_{zx}=\nu_T }[/math], [math]\displaystyle{ \nu_{yz}=\nu_A }[/math], [math]\displaystyle{ \nu_{zy}=E_T\nu_A/E_A }[/math], [math]\displaystyle{ G_{xy}=G_{yz}=G_A }[/math], [math]\displaystyle{ G_{xz}=G_T=E_T/(2(1+\nu_T)) }[/math], [math]\displaystyle{ \alpha_{x}=\alpha_{z}=\alpha_T }[/math], [math]\displaystyle{ \alpha_{y}=\alpha_A }[/math], [math]\displaystyle{ \beta_{x}=\beta_{z}=\alpha_T }[/math], and [math]\displaystyle{ \beta_{y}=\beta_A }[/math].

Material Properties

The properties for Transverse 1 and Transverse 2 are the same, although their initial orientations are different. The properties are

Property Description Units Default
EA Axial tensile modulus pressure units none
ET Transverse tensile modulus pressure units none
GA Axial shear modulus pressure units none
GT Transverse shear modulus pressure units none
nuA Axial Poisson's ratio none 0.33
nuT Transverse Poisson's ratio none none
alphaA Axial thermal expansion coefficient ppm/K 40
alphaT Transverse thermal expansion coefficient ppm/K 40

In a transversely isotropic material, the three transverse properties are not independent; they are related by

      [math]\displaystyle{ G_T = {E_T\over 2(1+\nu_T)} }[/math]

As a consequence, you can only specify two of these three properties

The following properties are only allowed in MPM calculations:

Property Description Units Default
betaA Axial solvent expansion coefficient 1/(wt fraction) 0
betaT Transverse solvent expansion coefficient 1/(wt fraction) 0
DA Axial solvent diffusion constant diffusion units 0
DT Transverse solvent diffusion constant diffusion units 0
kCondA Axial thermal conductivity conductivity units 0
kCondT Transverse thermal conductivity conductivity units 0
(other) Properties common to all materials varies varies

Transverse 1 and Transverse 2 give identical materials but with different initial orientations. You can change to any other orientation when defining material points (in MPM) or elements (in FEA) by selecting rotations angles for particles or elements. In 2D, the only rotation angle that is allowed is about the z axis. Because there is only one rotation angle, you need both material types to allow you to specify all possible orientations for 2D analysis of transversely isotropic materials. In other words, for 2D analysis, the axial direction has to be either in the x-y plane (Transverse 2) or normal to the x-y plane (Transverse 1). Any other orientation would induce out-of-plane shear that is not allowed in 2D calculations. To handle such material orientations, you need to use 3D calculations (MPM only).

History Variables

None

Examples

These commands model carbon fibers as a transversely isotropic material with axial direction in the y direction

Material "carbon","Carbon Fiber","Transverse 2"
  EA 220000
  ET 20000
  GA 18000
  nuT 0.3
  nuA .2
  alphaA -.4
  alphaT 18
  rho 1.76
Done