Difference between revisions of "Orthotropic Material"
Line 96: | Line 96: | ||
| | ||
<math>\nu_{ | <math>|\nu_{ij}|<\sqrt{\frac{E_{ii}}{E_{jj}} \qquad {\rm and} \qquad | ||
2\nu_{xy}\nu_{yz}\nu_{zx} < 1-\nu_{xy}\nu_{yx}-\nu_{yz}\nu_{zy}-\nu_{xz}\nu_{zx}</math> | 2\nu_{xy}\nu_{yz}\nu_{zx} < 1-\nu_{xy}\nu_{yx}-\nu_{yz}\nu_{zy}-\nu_{xz}\nu_{zx}</math> | ||
Revision as of 15:36, 17 February 2021
Constitutive Law
This anisotropic MPM material (or FEA material) is a small strain, linear elastic material. The stress (σ) and strain (ε) are related by:
[math]\displaystyle{ \vec\varepsilon = \mathbf{S}\vec\sigma + \vec\alpha\Delta T + \vec\beta c }[/math]
[math]\displaystyle{ \vec\sigma = \mathbf{C}\vec\varepsilon + \vec M\Delta T + \vec M_\beta c }[/math]
where S and C are the compliance and stiffness tensors, [math]\displaystyle{ \vec\alpha }[/math] and [math]\displaystyle{ \vec\beta }[/math] are the thermal and solvent expansion tensors, and [math]\displaystyle{ \vec M }[/math] and [math]\displaystyle{ \vec M_\beta }[/math] are the stress-temperature and stress-concentraion tensors. ΔT is difference between current temperature and the stress free temperature and c is the weight fracture solvent concentration. These equations use contracted notation where stress and strain tensors contract to vectors:
[math]\displaystyle{ \vec\varepsilon = (\varepsilon_{xx},\varepsilon_{yy},\varepsilon_{zz},\varepsilon_{yz},\varepsilon_{xz},\varepsilon_{xy}) }[/math]
[math]\displaystyle{ \vec\sigma = (\sigma_{xx},\sigma_{yy},\sigma_{zz},\sigma_{yz},\sigma_{xz},\sigma_{xy}) }[/math]
and the order of the shear terms is by the standard convention. The stiffness and compliance tensors contract to 6X6 matrices while all thermal and moisture expansion tensors contract to a vector. When used as an FEA material, the solvent expansion and solvent concentration terms are not used.
Material Matrices
For an orthotropic material, the stiffness and compliance tensors are:
[math]\displaystyle{ \mathbf{C}^{-1} = \mathbf{S} = \left(\begin{array}{cccccc} {1\over E_x} & -{\nu_{xy}\over E_x}& -{\nu_{xy}\over E_x} & 0 & 0 & 0 \\ -{\nu_{yx}\over E_y} & {1\over E_y} & -{\nu_{yz}\over E_y} & 0 & 0 & 0 \\ -{\nu_{zx}\over E_z} & -{\nu_{zy}\over E_z} & {1\over E_z} & 0 & 0 & 0 \\ 0 & 0 & 0 & {1\over G_{xz}} & 0 & 0 \\ 0 & 0 & 0 & 0 & {1\over G_{yz}} & 0 \\ 0 & 0 & 0 & 0 & 0 & {1\over G_{xy}} \end{array}\right) }[/math]
where E and G are tensile and shear moduli, ν are Poisson's ratios, and x, y, and z refer to orthogonal axes of the material. The thermal and solvent expansion tensors are
[math]\displaystyle{ \vec\alpha = (\alpha_x, \alpha_y,\alpha_z,0,0,0) }[/math]
[math]\displaystyle{ \vec\beta = (\beta_x, \beta_y,\beta_z,0,0,0) }[/math]
where again, x, y, and z refer to orthogonal axes of the material. The stress-temperature and stress-concentration tensors are found from
[math]\displaystyle{ \vec M = -\mathbf{C}\vec\alpha \quad{\rm and}\quad \vec M_\beta = -\mathbf{C}\vec\beta }[/math]
All these properties are set as explained below. The solvent expansion terms are for MPM only.
Material Properties
The properties are
Property | Description | Units | Default |
---|---|---|---|
Ex (or ER) | x-direction modulus (or R if axiysmmetric) | pressure units | none |
Ey (or EZ) | y-direction modulus (or Z if axisymmetric) | pressure units | none |
Ez (or ET) | z-direction modulus (or θ if axisymmetric) | pressure units | none |
Gxy, Gyx (or GRZ,GZR) | x-y plane shear modulus (or R-Z if asymmetric) | pressure units | none |
Gxz, Gxz (or GRT,GTR) | x-z plane shear modulus (or R-θ if asymmetric) | pressure units | none |
Gyz, Gzy (or GZT,GTZ) | y-z plane shear modulus (or Z-θ if asymmetric) | pressure units | none |
nuxy (or nuRZ) | x-y Poisson's ratio (or R-Z if asymmetric) | none | none |
nuyx (or nuZR) | y-x Poisson's ratio (or Z-R if asymmetric) | none | none |
nuxz (or nuRT) | x-z Poisson's ratio (or R-θ if asymmetric) | none | none |
nuzx (or nuTR) | z-x Poisson's ratio (or θ-R if asymmetric) | none | none |
nuyz (or nuZT) | y-z Poisson's ratio (or Z-θ if asymmetric) | none | none |
nuzy (or nuTZ) | z-y Poisson's ratio (or θ-Z if asymmetric) | none | none |
alphax (or alphaR) | x-direction thermal expansion coefficient (or R if axisymmetric) | ppm/K | none |
alphay (or alphaZ) | y-direction thermal expansion coefficient (or Z if axisymmetric) | ppm/K | none |
alphaz (or alphaT) | z-direction thermal expansion coefficient (or θ if axisymmetric) | ppm/K | none |
You should only set one for each pair of Poisson's ratios (e.g., one of nuxy and nuyx). Note that to define a valid materials, the Poisson's ratios must satisfy:
[math]\displaystyle{ |\nu_{ij}|\lt \sqrt{\frac{E_{ii}}{E_{jj}} \qquad {\rm and} \qquad 2\nu_{xy}\nu_{yz}\nu_{zx} \lt 1-\nu_{xy}\nu_{yx}-\nu_{yz}\nu_{zy}-\nu_{xz}\nu_{zx} }[/math]
The following properties are only allowed in MPM calculations:
Property | Description | Units | Default |
---|---|---|---|
betax (or betaR) | x-direction solvent expansion coefficient (or R if axisymmetric) | 1/(wt fraction) | 0 |
betay (or betaZ) | y-direction solvent expansion coefficient (or Z if axisymmetric) | 1/(wt fraction) | 0 |
betaz (or betaT) | z-direction solvent expansion coefficient (or θ if axisymmetric) | 1/(wt fraction) | 0 |
Dx (or DR) | x-direction solvent diffusion constant (or R if axisymmetric) | diffusion units | 0 |
Dy (or DZ) | y-direction solvent diffusion constant (or Z if axisymmetric) | diffusion units | 0 |
Dz (or DT) | z-direction solvent diffusion constant (or θ if axisymmetric) | diffusion units | 0 |
kCondx (or kCondR) | x-direction thermal conductivity (or R if axisymmetric) | conductivity units | 0 |
kCondy (or kCondZ) | x-direction thermal conductivity (or Z if axisymmetric) | conductivity units | 0 |
kCondz (or kCondT) | x-direction thermal conductivity (or θ if axisymmetric) | conductivity units | 0 |
(other) | Properties common to all materials | varies | varies |
History Data
None