Difference between revisions of "Isotropic Material"

From OSUPDOCS
Jump to navigation Jump to search
 
(7 intermediate revisions by the same user not shown)
Line 10: Line 10:
== Material Properties ==
== Material Properties ==


Although deformation properties of an isotropic [[Material Models|MPM material]] (or [[FEA Material Models|FEA material]]) can be defined by any two of λ, K, G, E, and ν, this material's properties can only be defined by specifying any two (and exactly two) of E, G, and ν. Those three and other properties for isotropic [[Material Models|MPM material]] (or [[FEA Material Models|FEA material]]) are:
Although deformation properties of an isotropic [[Material Models|MPM material]] (or [[FEA Material Models|FEA material]]) can be defined by any two of λ, K, G, E, and ν, this material's properties can only be defined by specifying any two (and exactly two) of E, G, and ν. Those three and other properties for this isotropic [[Material Models|MPM material]] (or [[FEA Material Models|FEA material]]) are:


{| class="wikitable"
{| class="wikitable"
Line 16: Line 16:
! Property !! Description !! Units !! Default
! Property !! Description !! Units !! Default
|-
|-
| E || Tensile modulus || MPa || none
| E || Tensile modulus || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || none
|-
|-
| G || Shear modulus || MPa || none
| G || Shear modulus || [[ConsistentUnits Command#Legacy and Consistent Units|pressure units]] || none
|-
|-
| nu || Poisson's ratio || none || none
| nu || Poisson's ratio || none || none
|-
|-
| alpha || Thermal expansion coefficient || ppm/M || 40
| alpha || Thermal expansion coefficient || ppm/K || 40
|-
| ([[Common Material Properties|other]]) || Properties common to all materials (but only allowed for MPM Calculations) || varies || varies
|}
|}


Line 33: Line 35:


     
     
<math> E = G\left({3\lambda + 2G \over  \lambda + G}\right), \qquad  G = G \qquad {\rm and} \qquad {\lambda\over 2(\lambda+G)}</math>
<math> E = G\left({3\lambda + 2G \over  \lambda + G}\right), \qquad  G = G \qquad {\rm and} \qquad \nu = {\lambda\over 2(\lambda+G)}</math>


or given K and &nu;:
or given K and &nu;:
Line 41: Line 43:


Other combinations are easily derived, but the above examples are the most common.
Other combinations are easily derived, but the above examples are the most common.
The following properties are only allowed in MPM calculations:
{| class="wikitable"
|-
! Property !! Description !! Units !! Default
|-
| beta || Solvent expansion coefficient || 1/(wt fraction) || 0
|-
| D || Solvent diffusion constant || mm<sup>2</sup>/sec || 0
|-
| kCond || Thermal conductivity || W/(m-K) || 0
|-
| ([[Common Material Properties|other]]) || Properties common to all materials || varies || varies
|}


== History Variables ==
== History Variables ==
Line 71: Line 58:
   rho 8.96
   rho 8.96
   kCond 401
   kCond 401
   Cv 386
   Cv 385
  Done
  Done
&nbsp;
<Material Type="1" Name="Copper">
  <rho>8.96</rho>
  <Cv>386</Cv>
  <E>0.12</E>
  <nu>0.34</nu>
  <alpha>16.5</alpha>
  <kCond>401</kCond>
</Material>

Latest revision as of 14:50, 2 June 2015

Constitutive Law

This MPM material (or FEA material) is a small strain, linear elastic material. The components of stress are related to components of strain by

      [math]\displaystyle{ \sigma_{ij} = \bigl(\lambda\varepsilon_{ii} - 3K(\alpha \Delta T+\beta c)\bigr)\delta_{ij} + 2G\varepsilon_{ij} }[/math]

where λ is the Lame coefficient, K is bulk modulus, α is thermal expansion coefficient, ΔT is temperature difference, β is solvent expansion coefficient (MPM only), c is solvent concentration (MPM only), and G is shear modulus. Two other isotropic material properties are modulus, E, and Poisson's ratio, ν.

Material Properties

Although deformation properties of an isotropic MPM material (or FEA material) can be defined by any two of λ, K, G, E, and ν, this material's properties can only be defined by specifying any two (and exactly two) of E, G, and ν. Those three and other properties for this isotropic MPM material (or FEA material) are:

Property Description Units Default
E Tensile modulus pressure units none
G Shear modulus pressure units none
nu Poisson's ratio none none
alpha Thermal expansion coefficient ppm/K 40
(other) Properties common to all materials (but only allowed for MPM Calculations) varies varies

If you know K or λ instead of E, G, and ν, they are easily converted to E and ν. Given K and G:

      [math]\displaystyle{ E = {9KG \over 3K+G} , \qquad G = G \qquad {\rm and} , \qquad \nu = {3K-2G\over 6K+2G} }[/math]

or given λ and G:

      [math]\displaystyle{ E = G\left({3\lambda + 2G \over \lambda + G}\right), \qquad G = G \qquad {\rm and} \qquad \nu = {\lambda\over 2(\lambda+G)} }[/math]

or given K and ν:

      [math]\displaystyle{ E = 3K(1-2\nu) , \qquad G ={ 3K(1-2\nu)\over 2(1+\nu)}, \qquad {\rm and} \qquad \nu = \nu }[/math]

Other combinations are easily derived, but the above examples are the most common.

History Variables

None

Examples

These commands model copper as an isotropic, elastic material (using scripted or XML commands):

Material "copper","Copper","Isotropic"
  E 120000
  nu .34
  alpha 16.5
  rho 8.96
  kCond 401
  Cv 385
Done